Pointcloud alignment: Combining LiDAR scans from different positions

Stefan Seifert, SCIMOND Anton Kunecke, Stellenbosh University

- How to combine two TLS point clouds from different positions?
 - Directly measure the scanner position (GPS, totalstation)
 - Use identifiyable points (reflectors, labels) to measure the scanner position
 - Identify structures (e.g. primitives) in both scans to match the clouds

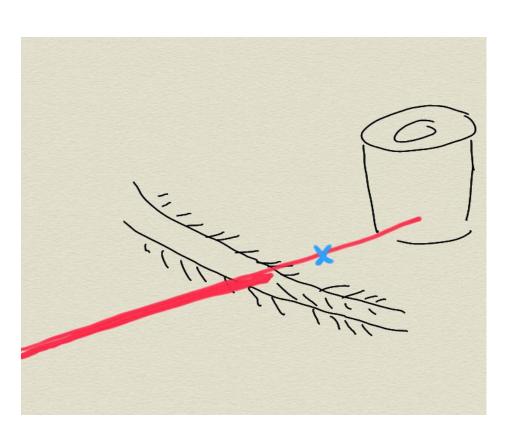
Direct Position

• GPS

- Dirrerential GPS
- Free Sky
- GSM network
- XY-accuracy ~ 1 cm (SAPOS-HEPS)
- Z-accuracy ~ 2 cm
- No orientation of the scanner

Total Station

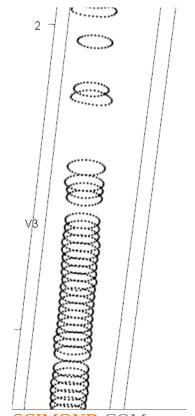
- Measure the relative positons of the scanner
- Need marker/prisms to calculate the scannner center
- Second tool to carry
- Precision 1 mm

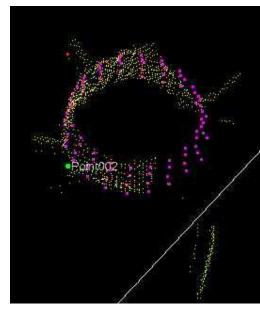


Targets / Reflectors

- Artificial objects
 - Easy to identify (colour, reflectance)
 - Known shape (sphere, cylinder, circle, billboard)
 - Rescan / finescan necessary for shape fitting
 - Enough reflectors visible form both postions

Pitfalls

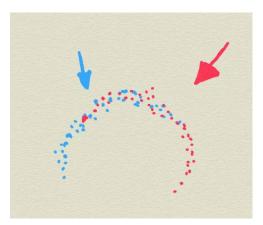

- Too few reflectors clearly visible from both scan positions
 - At least 4 reflectors needed to seen from both scan positions
 - Partly occluded (wrong center!)
 - Need some more to calculate stddev and find errors
 - To minimise angular errors, some distance is required

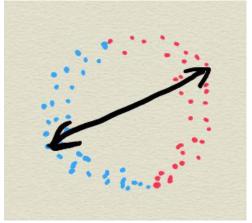

Hints

- Allways check the reflector postions from both scan positions
- Have a look at the reflector fine scans
- Place enough reflectors

Fit primitives

- Identify structures in the scans which are visible from both positions
 - Ground
 - Stems
 - Branches
- Fitting cylinders on a partly scanned stem/branch is tricky
- Use medial axes to register both scans

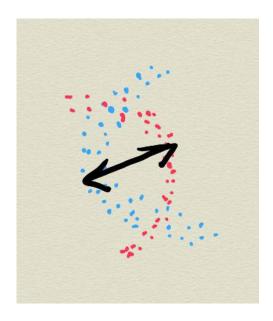



Fit planes

- Identify structures which can be used to match both scanpositions
 - Planes like bare ground, walls, sign-boards
 - Fit the plane in both scans and use ist to fix one axis
 - At least three differently orientated planes are needed
 - In architecture easy, but in forests?

Fit cylinders to stems

- Fit cylindes to stem pointcoulds, which are seen from both scanpositions
 - From the same direction → same as planes fitting. Use "surface" points directly
 - From opposite direction → fit "good" cylinder, use cylinder axis to match point clouds



Use fixed objects

- Swinging of reflectors problematic
- Trying to fit upper tree parts
 - Tree are swinging (wind, convection)
 - Use stem parts near the ground
 - Don't use easily movable bushes or twigs

Iterative Closest Point (ICP)

- Good if points are on the same surface
- Wrong if points are on opposite stem surfaces
- "Wrong" in tree crowns
- Sometimes OK for the ground

