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Abstract: Forest fungi provide recreational and economic services, as well as ecosystem biodiversity.
Wild mushroom yields are difficult to estimate; climatic conditions are known to trigger temporally
localised yields, and forest structure also affects productivity. In this work, we analyse the capacity of
remotely sensed variables to estimate wild mushroom biomass production in Mediterranean Pinus
pinaster forests in Soria (Spain) using generalised additive mixed models (GAMMs). In addition to
climate variables, multitemporal NDVI derived from Landsat data, as well as structural variables
measured with mobile Terrestrial Laser Scanner (TLS), are considered. Models are built for all
mushroom species as a single pool and for Lactarius deliciosus individually. Our results show that, in
addition to autumn precipitation, the interaction of multitemporal NDVI and vegetation biomass are
most explanatory of mushroom productivity in the models. When analysing the productivity models
of Lactarius deliciosus, in addition to the interaction between canopy cover and autumn minimum
temperature, basal area (BA) becomes relevant, indicating an optimal BA range for the development
of this species. These findings contribute to the improvement of knowledge about wild mushroom
productivity, helping to meet Goal 15 of the 2030 UN Agenda.

Keywords: mushroom yields; Lactarius deliciosus; TLS; NDVI; generalised additive mixed model;
Mediterranean forests; SDG 2030 UN Agenda

1. Introduction

Remote sensing is an exceptional technology for applications in forest ecosystems [1],
particularly for assessment of resources [2]. Remote sensing provides data with overall
perspective [3] as well as powerful tools for monitoring forest dynamics [4] and the drivers
of change [5]. Applications have become more detailed and specific with the improvement
of data quality, storage capacity, and analysis techniques [6], and as a result of the informa-
tion needs imposed by society, going from simple characterization to complex measure and
modelling [7].

In the last decade, mushroom-related attributes such as presence, occurrence, and
productivity have been modelled with a range of approaches, highlighting a growing
interest in the prediction of these non-wood forest products [8–10], as they provide a wide
range of ecosystem services. Moreover, fungi contribute to maintaining and augmenting
the biodiversity of other taxa [11,12] and are considered for provisioning of economic
and sociocultural services, as they are among the most appreciated edible non-wood
forest products, particularly in Mediterranean areas [13], and they generate recreation
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and economic returns [14]. Therefore, predicting fungal yields may help the sustainable
management of forest ecosystems and contribute to the achievement of the Sustainable
Development Goal 15 of the 2030 UN Agenda for Sustainable Development [15].

The interaction among factors triggering mushroom production is complex and non-
linear [16]. Climatic and environmental parameters are paramount drivers of the naturally
irregular productivity of mushrooms [17]. Climate parameters, particularly accumulated
precipitation, have a strong influence on the fruiting time and total productivity [18].
Furthermore, the inter- and intra-annual irregularity of mushroom production related to
precipitation events is being augmented by the climate change effects which, in Mediter-
ranean environments, cause the fruiting of mushrooms to be increasingly scarce [17–19]. In
addition to climate, site-specific characteristics such as soil [20,21] and topography drive
mushroom specificity [22]. Habitat spatial and temporal fragmentation also play a role in
maintaining diversity in communities of ectomycorrhizal fungi [23].

An additional important factor in mushroom development is the forest structure [24].
Here, stand density was found as a key driver by Bonet et al. (2008, 2010) [25,26] when mod-
elling total mushroom production in pines of northern Spain, and Ágreda et al. (2013) [27]
pointed out stand age as a particularly relevant factor in Mediterranean forests. At the land-
scape scale, the structure and composition of forest stands have been found to be important
for the distribution of mushroom yields [8,28]. Therefore, forest management practices such
as thinning, clearcutting, or planting, as well as natural disturbances, influence mushroom
yields distribution and quantity [24,29,30].

Overall, the climatic and structural parameters driving mushroom productivity can
currently be measured or estimated at medium to large scale with high precision and spatial
detail employing remote sensing technologies. Remotely sensed data have capacity for
estimation of forest structural parameters and for assessment of forest vigour and condition
at different spatial scales. Light Detection and Range (LiDAR) is the preferred technology
for characterization of structure due to the high precision its data provide, the lower cost,
and wide coverage relative to field data [31]. LiDAR is being increasingly employed in
all its variants (aerial, terrestrial, and mobile) for multiple applications [32]. In particular,
Terrestrial Laser Scanning (TLS) provides enormous detail about interior canopy features
and is a natural choice for studies of stem allometry and biomass, simulation of light
environments, testing of photosynthesis, and production models [33]. Optical sensors
acquiring frequent data from satellite platforms, like those from the Landsat Programme,
provide comparative reflectance values through the year that respond to the vigour and
phenology state of forest stands. Individually, and better still in combination, remote
sensing active and passive technologies may facilitate, through the approximation of
forest structural parameters and the estimation of primary productivity, the assessment of
mushroom yields.

Despite the advantages of using remote sensing, there have been yet few attempts
to employ this kind of data to explain fungal dynamics. Recently, some efforts have in-
corporated remotely sensed measures in the modelling of mushroom traits. For example,
Thers et al. (2017) [34] found airborne LiDAR-based structural variables more explicative
than botanical and environmental variables when modelling fungi species richness and
composition in Denmark. Peura et al. (2016) [35] demonstrated that LiDAR structural
variables are more explanatory than field-measured variables when modelling the occur-
rence of forest fungi in temperate forests of Germany. Similarly, Olano et al. (2020) [18]
demonstrated that mushroom yields are linked to forest primary productivity and to soil
moisture—inferred from Landsat NDVI values and the ESA CCI combined Soil Moisture
dataset respectively—in Mediterranean ecosystems.

All this information leads to hypothesise that the combined use of different types of
remote sensing data has a strong potential for estimating mushroom yields. The specific
objectives of this work are: (i) to evaluate the capacity of multitemporal optical variables
(primary productivity, vigour, and condition) and TLS-derived variables (structure) to
predict mushroom production in Mediterranean forests; (ii) to demonstrate whether the
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forest productive capacity, and the volume of total aboveground biomass in particular,
determine mushroom production, and (iii) to assess whether the variables that determine
total mushroom production in Mediterranean ecosystems are the same as for a specific
mushroom species.

2. Materials and Methods
2.1. Study Area and Experimental Design

Mushroom data were collected from forests dominated by Pinus pinaster Ait. in the
province of Soria (autonomous region of Castilla y León), in Central Spain (Figure 1). The
area (~17.000 ha) is relatively flat, with an elevation ranging from 1000 m to 1200 m a.s.l.
Climate is Mediterranean continental, with cold winters and a summer drought period
from July to August. Total annual precipitation is, on average, 511 mm, and rain events
occur mainly in spring and autumn. Pinus pinaster forests grow over sandy soils with high
permeability and low nutrient content.

Pinus pinaster is a widely distributed species in the Mediterranean basin, employed in
protective and productive reforestations due to its frugality and productivity of wood, resin,
and fungi [36]. Several edible mushroom species such as Hygrophorus latitabundus Britz,
Lactarius deliciosus (L.) S.F. Gray, Macrolepiota excoriata (Schaeff.) M.M. Moser, Macrolepiota
konradii (Huijsm.), Macrolepiota mastoidea (Fr.) Singer, Macrolepiota procera (Scop.) Sing,
Suillus luteus (L.) Roussel, Tricholoma portentosum (Fr.) Quél, and Tricholoma terreum (Sch.)
Kumm can be found in these forests [37].
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Figure 1. Characterization of the study area: (a) overall location in the Mediterranean basin where
Pinus pinaster distributes (source: Caudullo et al., 2017) [38]); (b) location and distribution of the
network of plots (numbered yellow dots); and (c) climograph (source: AEMET).
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Seventeen permanent plots of 150 m2 (5 × 30 m) have been established in this forest
since 1997, with an external fence to prevent harvesting and trampling. Plots were located
applying a stratified design to represent all forest structures. Sporocarps, the fungi fruiting
bodies, were sampled on a weekly basis during the main fruiting period, which is September
to December. All sporocarps within the plots were collected, fresh-weighted, and identified
to the species level (see Ágreda et al., 2015 [17] for details).

2.2. Mushroom Yield Data

A database with values of the annual mushroom production at the plot level records
the inside-plot yields, indicating species, number of individuals, and biomass per species
as collected every week. Since these forests are slow-growing and there were no silvicul-
tural treatments in the last decade, we considered that for this period the forest structure
remained stable. We worked with the last 10 years of the database (2012–2021), a period in
which the forest structure can be characterised and considered stable.

Annual values of total biomass (g) were calculated with all mushroom species in a
single pool. Additionally, total biomass of the main commercial species, i.e., saffron milk
cap (Lactarius deliciosus), was also evaluated. Therefore, we built a ten-year time series
(2012–2021) of annual mushroom yields for all species in a pool, and of saffron milk cap
individually (Figure 2). In total, 295.15 kg of mushrooms were collected, of which 53.6 kg
(18.16%) were Lactarius deliciosus, the most appreciated edible mushroom species in the
area (Figure 2).
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Figure 2. Statistical characterization of annual mushroom yield (g) in the experimental network of
plots during the period 2012–2021. (left): total mushroom biomass and (right): Lactarius deliciosus
biomass.

2.3. Climatic Data

Ten years (2012–2021) of precipitation and temperature time series were retrieved
from the AEMET (Spanish Meteorological Agency, http://www.aemet.es, accessed on
8 September 2022) meteorological station in Soria. From the original daily database, we
calculated the accumulated precipitation of the autumn season (September, October, and
November) and the average monthly minimum temperature in this season. These parame-
ters are known to be the most relevant climatic variables for estimation of Lactarius deliciosus
productivity in the study area, which is the most relevant species in these forests [18].

2.4. Forest Structural Measurements

To characterise forest structure at the plot level and to estimate overall vegetation vol-
ume of biomass, Terrestrial Laser Scanner (TLS) measurements were acquired in February
2022. A GeoSLAM mobile TLS with six sensors was thoroughly walked through each plot,
retrieving very dense point clouds (300,000 points per second, a range of 100 m, and a
relative accuracy up to 6 mm depending on the environment). The original point clouds
were clipped to each plot area with proprietary software (Figure 3a). The resulting point
clouds were used for estimation of overall vegetation volume employing the VoxR package

http://www.aemet.es
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in R [39], voxelizing the point cloud with a voxel size of 10 cm (Figure 3b). The stand
volume is the sum of the voxels multiplied by their size.
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Figure 3. Point cloud acquired with GeosLAM. (a) Example of a clipped plot point cloud correspond-
ing to plot 22. (b) Schematic example of voxelization.

From the TLS point cloud, we also derived the percentage of canopy cover. To calculate
the percentage of canopy cover, we considered the crowns of trees shading any part of the
plot, including those which stand outside the plot fence. We removed the lowest 3 m from
the point cloud to ensure isolation of the trees’ canopy. The value of 3 m is an arbitrary
threshold as, in our experience, this is enough to ensure that the ground vegetation is
not included. Afterwards, we voxelized the point cloud with a voxel size of 5 cm using
the VoxR package and calculated the canopy cover for each plot as the ratio of the area
occupied by tree crowns to the plot area (Figure 4).
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To complement the structural characterization of the plots, we calculated the Stand
Density Index SDI [40] and the total basal area (BA). In summer 2020, we measured all tree
diameters and heights using a digital calliper and a hypsometer (VERTEX), respectively.

2.5. Landsat Data

The Normalised Difference Vegetation Index (NDVI, [41]) is the most frequently used
spectral index in remote sensing [42]. Algebraically, it is the ratio-normalised difference
of infrared minus red (NIR − Red/NIR + Red) and is interpreted as a measure of the
vegetation vigour in a given time (e.g., [43]). When NDVI values are compared between
two times, this difference reflects the capacity of vegetation to produce energy, i.e., its
primary productivity during the period considered [44].

In this work, we calculated NDVI values from Landsat imagery acquired by the The-
matic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land
Imager (OLI) sensors from 2012 to 2021. Since the annual primary productivity is repre-
sented by the difference between the season maximum and minimum NDVI values [44], our
target dates for selection of imagery were 14 February (winter) and 15 August (summer),
but these dates were flexible to accommodate orbital cycles and cloudiness. Average values
of all 30 m pixels intersected by the field plots were retrieved, and the absolute value of the
difference between summer and winter NDVI was evaluated and assigned to each plot.

2.6. Statistical Analysis

The statistical analysis to predict all mushroom and Lactarius deliciosus yields started
from a database with eight covariates (Table 1). To get some understanding of the rela-
tionships between yields and the climatic, structural, and primary productivity predictors,
and to select the most explanatory ones, we explored Pearson correlations between each
pair of variables (Figure 5). SDI was highly correlated with basal area (R = 0.86); therefore,
only one of them was included in the models to avoid collinearity [45]. The correlation
between all mushroom yields and Lactarius deliciosus yields (R = 0.66) provided confidence
in the moderately high contribution of the latter to the complete pool. Furthermore, despite
the high values of correlation found between SDI and Canopy (R = −0.78) and between
BA and Canopy (R = −0.71), both SDI and BA were candidates in the models as they are
evaluated from different data sources.

Table 1. Description of variables involved in the statistical analysis.

Variable Description Max Min Mean Stedv

Yieldtotal Total yield of mushrooms (g) 9504 0 1746 1910.27
YieldLactarius Total yield of Lactarius deliciosus (g) 5706.50 0 67 690.08

NDVIdiff
Difference between winter and
summer NDVI (absolute value) 0.26 0.003 0.10 0.0057

NDVIdiffprev

Difference between winter and
summer NDVI of the previous year

(absolute value)
0.26 0.002 0.10 0.0054

Canopy Canopy cover (%) 79.66 69.96 74.37 2.94

Volumebiomass
Volume of total aboveground
biomass in the plot (m3 ha−1) 301.00 151.50 221.60 49.16

BA Basal area of the plot (m2 ha−1) 76.40 31.60 54.16 14.08
SDI Stand Density Index 1414.30 662.18 1034.8 247.79

Precautumn Accumulated autumn rainfall (mm) 207.40 35.20 126.10 47.12

Tmin
Average of the autumn months’

minimum temperature (◦C) 7.67 5.10 6.11 0.80



Remote Sens. 2022, 14, 5025 7 of 15
Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. Pearson correlation between pairs of variables. Unravelling the complex relationship be-
tween mushroom yield and its drivers may require powerful statistical tools. Generalised Additive 
Mixed Models (GAMM) are flexible in modelling complex variables and facilitate identification of 
the interaction between non-linear factors. Therefore, GAMM models were most suitable to predict 
mushroom yields with linear and non-linear variables, being more efficient and easier to interpret 
for all potential users. In addition, GAMMs were used with a random term, which in our case ac-
counts for measuring errors at the plot level. The predictor function for a GAMM (η) has this general 
formula (Equation (1)): 

η (X1 ij, ..., Xq ij, K1 ij, ..., Kn ij) = α + β1 · X1 ij + ... + βq · Xq ij + f1 K1 ij + ... + fn Kn ij + aj + ε∼N(0,σ2) (1)

where X1…Xq, K1 …Kn is a set of n explanatory variables, β1 …βq are regression parame-
ters, f1 …fn are nonparametric smoother functions, aj is the random effect at the plot level, 
and Ɛ is the error term [46]. The indices i and j denote the ith year of yield data and the jth 
plot of the experiment, respectively. 

Prior to the application of GAMM models and to assure its suitability, we tested lin-
ear regressions. For each modelling case (overall and Lactarius deliciosus), we tested all 
possible combinations and interactions of variables with the dredge command of the 
MuMin package in R. Based on the Akaike Information Criterion (AIC) [47], we selected 
the best model. Given the poor results obtained by the linear regression tested in a first 
step (R2 = 0.3 for all mushroom and R2 = 0.2 for Lactarius deliciosus models), GAMM models 
were built with mgcv package [48,49], observing the most explanatory variables that were 
selected in the previous step. We plotted the relationships among variables for a visual 
exploration and interpretation of the results, since GAMMs are better interpreted by vis-
ual examination than by statistical significance [50].  

  

Figure 5. Pearson correlation between pairs of variables.

Unravelling the complex relationship between mushroom yield and its drivers may
require powerful statistical tools. Generalised Additive Mixed Models (GAMM) are flexible
in modelling complex variables and facilitate identification of the interaction between
non-linear factors. Therefore, GAMM models were most suitable to predict mushroom
yields with linear and non-linear variables, being more efficient and easier to interpret for
all potential users. In addition, GAMMs were used with a random term, which in our case
accounts for measuring errors at the plot level. The predictor function for a GAMM (η) has
this general formula (Equation (1)):

η (X1 ij, . . . , Xq ij, K1 ij, . . . , Kn ij) = α + β1 · X1 ij + . . . + βq · Xq ij + f1 K1 ij + . . . + fn Kn ij + aj + ε∼N(0,σ2) (1)

where X1 . . . Xq, K1 . . . Kn is a set of n explanatory variables, β1 . . . βq are regression
parameters, f1 . . . fn are nonparametric smoother functions, aj is the random effect at the
plot level, and ε is the error term [46]. The indices i and j denote the ith year of yield data
and the jth plot of the experiment, respectively.

Prior to the application of GAMM models and to assure its suitability, we tested
linear regressions. For each modelling case (overall and Lactarius deliciosus), we tested
all possible combinations and interactions of variables with the dredge command of the
MuMin package in R. Based on the Akaike Information Criterion (AIC) [47], we selected
the best model. Given the poor results obtained by the linear regression tested in a first step
(R2 = 0.3 for all mushroom and R2 = 0.2 for Lactarius deliciosus models), GAMM models
were built with mgcv package [48,49], observing the most explanatory variables that were
selected in the previous step. We plotted the relationships among variables for a visual
exploration and interpretation of the results, since GAMMs are better interpreted by visual
examination than by statistical significance [50].

3. Results

Two models, one for the entire mushroom assemblage and one for Lactarius deliciosus
only, were developed, including climatic and forest structural variables as well as primary
productivity as predictors.
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In the best model for the entire set of mushrooms, the adjusted coefficient of determi-
nation (R2) was 0.49 and the AIC was 2954.352. The actual model is represented by the
following equation (Equation (2)):

Yieldtotal = f1(Precautumn) + f2(Volumebiomass, NDVIdiff) + f3(SDI) + f4(Canopy, Tmin) + random + ε (2)

where fi are the nonparametric smoother functions summarised in Table 2. The non-linear
parameters are represented in Figure 6 for visual interpretation.

The edf (effective degrees of freedom) values in Table 2, which provides a measure of
the linearity of the relationship between variables [51], showed that mushroom yield has
a highly non-linear relationship with autumn precipitation and SDI and has a non-linear
relationship with the interactions between Volumebiomass and NDVIdiff and between canopy
cover and Tmin.

Table 2. Parameters describing the smoother functions, where the significance codes are for a
p-value = 0 ‘***’, p-value = 0.01 ‘*’, p-value = 0.05 ‘·’.

Edf p-Value Significance

f1(Precautumn) 3.682 <0.0000 ***
f2(Volumebiomass,

NDVIdiff)
2.000 0.0001 ***

f3(SDI) 2.658 0.0112 *
f4(Canopy, Tmin) 2.000 0.0959 ·
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Increased rainfall during the autumn months (Precautumn > 150) was associated with
an increment in the mushroom yield, but there was no positive effect with Precautumn
below this value (Figure 6a). There was an optimum relationship between stand density
and mushroom production with highest production at SDI values between 1000 and 1200;
however, for higher SDI values the mushroom yield decreases (Figure 6b). The interaction
between plot Volumebiomass and NDVIdiff (Figure 6c) indicated that mushroom yield in-
creases with increasing Volumebiomass and higher primary productivity. The interaction
between Canopy and Tmin (Figure 6d) indicated that mushroom yield is higher when the
minimum temperature in autumn and the canopy cover are both higher.

Visualising the common effect of SDI and NDVIdiff on mushroom yield facilitates its
interpretation (Figure 7). For an SDI value of approximately 650, the predicted yield of all
mushrooms together is lowest. It increases when stand density is rather high (SDI 950)
but decreases again at even denser stands (SDI 1250). Note that the effect of NDVIdiff on
the mushroom production is even stronger. Between NDVIdiff 0.05 and 0.25, mushroom
production increases by approx. 800 units.
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The model generated for Lactarius deliciosus (R2 = 0.3, AIC = 2658.378) is represented
in Equation (3), and its parameters are summarised in Table 3.

YieldLactarius = f1(Precautumn) + f2(Volumebiomass, NDVIdiff) + f3(BA) + random + ε (3)

where, as before, fi is a nonparametric smoother function. Similar to the previous case, in
Figure 8, the non-linear parameters are displayed for visual interpretation.

Table 3. Parameters describing the smoother functions of the model of Lactarius deliciosus yield, where
the significance codes are for a p-value = 0 ‘***’, p-value = 0.05 ‘·’.

Edf p-Value Significance

f1(Precautumn) 3.318 <0.0000 ***
f2(Volumebiomass,

NDVIdiff)
3.741 0.0002 ***

f3(BA) 2.035 0.0694 ·
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In this case, the edf indicates that Lactarius deliciosus yields have a highly non-linear rela-
tionship with the autumn precipitation and with the interaction between vegetation biomass
and primary productivity, and that for basal area the relationship is less pronounced.

For an optimal yield of Lactarius deliciosus in Mediterranean dry forests of P. pinaster,
various circumstances are required: abundant rainfall in the autumn months, high values
of the interrelationship between Volumebiomass and NDVIdiff (primary productivity), and
BA not exceeding 55–60 m2 ha−1. Interestingly, when BA exceeds 60 the Lactarius deliciosus
yield is lower (Figure 8).

4. Discussion

Mushroom production is an ecosystem service highly demanded by society in the
study area, not only because of the touristic and gastronomic resource that the exploitation
of edible species represents but also for its important role in the functioning of ecosystems.
According to the latest monitoring report on SDG 15 target in 2022, the risk of species
extinction is increasing at a rate unprecedented in history [52]. Fungi are organisms
seriously threatened by global change processes [17,19] and whose life cycles are largely
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unknown [53]. In this sense, the use of remotely sensed data and its processing with
advanced mathematical techniques may facilitate our progress in determining the factors
that trigger mushroom production and in predicting their yields. Having mushroom yield
models will enable the inclusion of mushrooms in sustainable forest management plans in
order to maintain the economic activity linked to their exploitation without compromising
this resource.

Progress is currently being made in mapping, on a global scale, the distribution
of mushrooms by applying artificial intelligence [54,55]. Likewise, the use of remote
sensing data is helping advance our knowledge of mushroom biology and the factors that
trigger their production [18,34,35], a key step in understanding their life cycle to facilitate
its management.

This work presents an approach for assessing the effects of climatic, structural, and
primary productivity variables of Mediterranean dry forests of Pinus pinaster in Spain
on mushroom yields and, in particular, on those of the edible species Lactarius deliciosus.
Through remotely sensed data that are transformed into derived variables (NDVI from
Landsat and canopy cover from TLS) and the application of GAMM models, we found that
mushroom fruiting, for the overall pool of species and for Lactarius deliciosus specifically, is
equally triggered by the cumulative precipitation of autumn (Precautumn > 150 mm). This
finding, firstly demonstrated by the ranking of independent variables in our models, is not
novel [18], but it is complemented by identifying other influencing factors which result
from the interaction between various parameters. In this sense, we noted the strength of
the interaction between forest vegetation volume (Volumebiomass) and primary productivity
(NDVIdiff), both characterised using remotely sensed data, as a second factor. Finally,
the other statistically significant variables in both models were structural, in agreement
with other authors (e.g., [25]). Interestingly, when modelling Lactarius deliciosus yields
alone, basal area becomes more relevant than SDI, pointing to an optimal range of BA
in which Lactarius deliciosus fruits. In [56], it was already demonstrated that there is an
optimum BA for mushroom production, which depends on the forest dominant species
and is approximately 35–40 m2 ha−1 for P. pinaster. In our study area, BA seemed to
positively influence Lactarius deliciosus yields up to a maximum value of 50 m2 ha−1.
Evapotranspiration in forests of lower densities leads to less water availability, while at
higher densities temperature may be reduced; this is linked to lower illumination and
directly affects mushroom yields. When modelling the entire pool of wild mushroom
species, SDI and the interaction between canopy cover and Tmin were the most relevant,
possibly indicating the minimum conditions necessary to achieve mushroom fruiting. The
moderate fit of our models (R2 ~ 0.49) indicates that the independent variables explain the
dependent variable to some extent but can be further improved, both in terms of sample
size and the type and number of parameters.

The role of remotely sensed variables became relevant in estimating yields, through the
interaction of vegetation volume (Volumebiomass) with primary productivity (NDVIdiff) in
both predictive models as well as the interaction of Canopy with minimum temperature
(Tmin) in the overall model. Vegetation primary productivity was historically among the first
variables to be estimated with multitemporal RS data [57], and currently it can be routinely
evaluated at a range of spatial scales thanks to the regular and frequent data acquired by
operational programs of different optical sensors [58]. The structural parameters, readily
estimated in our plots with point clouds acquired with a mobile TLS, would have been
unreachable otherwise, and certainly places our work as an example of novel application
for the employment of TLS data [32].

Vegetation volume interacting with primary productivity in the yield models suggests
the potential for including forest growth rate, a measurable structural parameter, in future
modelling efforts. In fact, [59] already demonstrated that there is a relationship between
maximum mushroom production and the forest stand growth rate and showed the example
of the mycorrhizal sporocarps development in relation with the growth and photosynthetic
rate of the host trees [60]. Post-treatment conditions following forest thinning have also been
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shown to facilitate short-term successional changes in fungal sporocarp assemblage [61].
Sustainable forest management should ensure good mushroom production when keeping
the stand density high but not overstocked.

Climate variables, forest primary productivity and forest structure determine the
production of mushrooms in Mediterranean forests. Remotely sensed data, multitemporal
optical and TLS point clouds in particular, are presented here as a key source of data with
strong potential for development of mushroom yields predictive models. The inclusion of
variables related to stand development, such as current growth, may further improve the
models, developing simple harvest predictive equations that would enable forest managers
to establish guidelines for fungal sustainable harvest.

5. Conclusions

A combination of active and passive remotely sensed data was shown to be relevant
for assessment of the overall mushroom productivity in Mediterranean dry forests of
Pinus pinaster, and specifically for Lactarius deliciosus. Advanced statistical analysis with
Generalized Additive Mixed Models (GAMM) unravelled the complex relationships among
forest primary productivity, structural parameters, and climatic variables driving the
amount of wild mushroom harvests. The most relevant factors triggering mushroom
fruiting were the accumulated precipitation of autumn and the interaction of vegetation
volume with primary productivity, the latter two estimated from TLS point clouds and
Landsat multitemporal NDVI, respectively. Lastly, whilst primary productivity and the
interaction of canopy cover and fall low temperatures are key in the estimation of overall
yields, basal area is more relevant for estimation of Lactarius deliciosus. The capacity of
remote sensing to extend models of mushroom yields at medium to large scale promises
relevant opportunities for the inclusion of these non-wood forest products in sustainable
management plans and SDGs achievement.
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