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Abstract: Future climate predictions for the Mediterranean area include prolonged droughts and an
increase in the frequency of extreme events. Silvicultural modification of stand density can buffer the
response of tree growth to changes in climate by enhancing soil water availability. We analyzed the
stem growth dynamics of Pinus halepensis, including the days of the year when 25%, 50% and 75% of
the intra-annual basal growth was achieved, considering two different social statuses (suppressed
and dominant) under four different thinning intensities (15%, 30% and 45% removal of the basal
area) for 8 years, based on biweekly band dendrometer recordings. The moment the trees reached
25% of the intra-annual basal growth was significantly influenced by the amount of precipitation
accumulated during the previous winter. On the other hand, the moment the trees reached 75% of the
intra-annual basal growth was significantly influenced by water availability in a shorter term, which
also affected the length of the growing period. Modification of competition through thinning showed
a significantly positive impact on growth, causing a delayed attainment of 50% of the intra-annual
basal growth. These results imply valuable information about forest dynamics that will support
forest managers’ decisions dealing with low water-availability in forests.

Keywords: thinning; stand density; Aleppo pine; drought stress; aridity; dominant; suppressed

1. Introduction

In recent years, the water stress caused by severe and prolonged droughts has been
inducing tree-growth decline, forest die-off and tree mortality on a global scale [1]. The
Mediterranean region’s forest productivity is expected to decrease as well. Hence, in the
Mediterranean climate, the most limiting resource for plant growth is water. In future,
this essential parameter is predicted to become increasingly critical in the Mediterranean
Basin, since climate-change models predict higher air temperatures and lower precipitation.
Longer and more frequent drought periods are supposed to occur with greater irregularity
and an appreciable impact on the most arid areas [2,3].

Thinning stands to lower densities, making more water available for the remaining
trees, is one of the most important measures of forest managers to mitigate the influence
of drought on tree growth [4]. It has been proved that modification of stand density by
thinning can buffer the response of tree growth and vigor to drought by enhancing soil
water availability for the remaining individuals [5]. Nonetheless, previous studies have
shown that thinning may cause additional stress in already dry sites, increasing solar
radiation, leading to higher air and soil temperatures [6]. In addition, trees of different sizes
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and crown classes compete in a different manner for water, light and other resources [7-9].
Consequently, radial growth responses to climate vary substantially according to social
status and local tree density under water limitation [10]. In particular, it is helpful to know
the growth responses to drought of trees in different crown classes [11].

Aleppo pine (Pinus halepensis Mill.) is the most widespread pine species in the Mediter-
ranean region and can grow under extensively varied climatic conditions [12,13]. The
mean annual temperature range of its natural distribution area is 12-16 °C, and its annual
precipitation range is 300-700 mm [14]. The area covered by this species has increased
due to plantation carried out during the 20th century and spontaneous colonization of
abandoned land. As many forests are dominated by this species, a better understanding
of how the growth at different time scales is constrained by the climate is required [15].
The Spanish P. halepensis forests occupy 1,770,530 ha [16], of which around 800,000 ha are
natural forests, constituting almost 7% of the total forested area in Spain [17].

Most studies on the relationships between secondary growth (the growth that results
from cell division in the cambia or lateral meristems that causes the stems and roots
to thicken) and climate are based on annual radial stem growth increment, which is an
important variable that allows tree growth and climate variability to be connected on
local to continental scales [18]. However, dendrometers allow us to obtain short-term data
on growth dynamics that are needed to analyze growth responses in relation to climatic
variability in short time scales. The availability of this information may be helpful for
evaluating the range of plasticity of a species under varying environmental conditions as a
first step for predicting its responses to future climatic scenarios [19].

In this paper, we analyze the stem growth dynamics of P. halepensis of two different
social status (dominant and suppressed trees) under different thinning intensities for
eight years, based on two-week band dendrometer recordings. The following question
is answered: are there differences in the intra-annual growth profile of trees considering
water availability, competition and social status?

2. Materials and Methods
2.1. Study Site

The study site was located in a 65-year-old Pinus halepensis plantation in the north
Spanish Meseta (Figure 1). Within the plantation, there were some Pinus pinea individuals
that were not included in the study. The area is characterized by a continental Mediter-
ranean climate, with low winter temperatures and frequent summer droughts. Over the last
20 years, the mean annual temperature was 10.7 °C (minimum 6.4 °C, maximum 11.7 °C)
and the average annual precipitation was 363 mm (minimum 218 mm, maximum 598 mm).
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Figure 1. Location (a) and design (b) of the experimental plot in Spain. TO-Control; T15-15% removal

of the basal area; T30-30% removal of the basal area; T45—45% removal of the basal area. The basal
area reduction was performed as a thinning from below.

Thinning treatments were conducted prior to the studied period (autumn 2010) in
an area of similar stand basal area and stand structure within the forest (Table 1). Four
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experimental plots of 40 m x 50 m were established, and four thinning intensities were
realized: 0%, 15 %, 30 % and 45 % reduction in the basal area of the unthinned control
plot (T0). The unthinned stand was considered the control. The basal area reduction was
performed as a thinning from below. Due to the experimental design, no replication of
thinning treatments existed. In the statistical approach, we therefore forewent the use of
“thinning intensity” to explain intra-annual growth patterns. However, we considered the
trees” competitive situation, which partly reflected different thinning intensities (Figure 2a).

Table 1. Stand characteristics.

Reduction

Initial BA 1 Final BA 1 Initial Mean Final Mean

2 : 4 : 4

Stand inBA 1 (%) Ho * (m) (m2ha-1) (m2ha-1) DBH ? (cm) DBH ? (cm) Longitude Latitude
TO 0 10.6 22,6 (0.1) 226 (0.1) 18.6 (6.4) 18.6 (6.4) 35°32/22" 46°36/342”
T15 15 10.1 27.6 (0.1) 23.5(0.1) 182 (6.1) 189 (6.1) 35°31/89” 46°36/384”
T30 30 9.4 20.0 (0.1) 14.0 (0.1) 17.1(5.8) 18.5(5.8) 35°31'41” 46°36'347"
T45 45 9.1 205 (0.1) 11.2 (0.1) 17.6 (6.1) 212 (6.2) 35°31/56” 46°36/281”

2500

1 Stand basal area; mean value and standard deviation in brackets; > mean height of the 100 trees with bigger
diameter; 3 quadratic mean diameter at breast height. Mean value and standard deviation in brackets. *
EPSG:25830-ETRS89/UTM zone 30N.
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Figure 2. (a) The relationship between competition and thinning regime. (b) The relationship between
DBH and social status. Mean value and standard deviation (italic and in brackets) are given.

2.2. Measurements

In 2011, we installed 48 stainless-steel band dendrometers (Dendrometer Increment
Sensor DB20 EMS Brno) around the stem at breast height in 12 randomly selected trees
per stand: 6 dominant trees and 6 suppressed (Figure 2b). Dominant trees are defined as
those individuals that stand above all other trees in their proximity and receive full light
from above, while suppressed trees are defined as those individuals that grow below the
tree canopy [20]. Dominant trees diameter ranged from 20 to 25 cm and suppressed trees
diameter ranged from 10 to 15 cm. Before installing the dendrometers, we removed the
dead outermost tissue of the bark with a rasp. This allowed us to diminish swelling and
shrinkage of the bark as a part of the increment dynamics. Dendrometer readings were
taken to the nearest 0.01 mm. In order to reduce diurnal bias, because daytime transpiration
causes stem shrinkage, readings were taken in the morning to [21]. According to [22], we
did not consider the measurements obtained during the first three months after installation
as these were within the adjustment phase of the band dendrometers.

Dendrometer data were recorded biweekly over an 8-year period. Due to jumps and
unexpected spikes, we discarded some annual series by visual inspection (Table 2). The
annual readings took place throughout the year, but mainly during the growth period
(Figure 3). The competitive situation of individual trees was described according to [23] by
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the local stand density index (SDIjyc,1). They defined the competition situation by means
of a modified local version of the original stand density index SDI [24]. Daily bioclimatic
variables (temperature and precipitation) were measured at the closest meteorological
station (data provided by InfoRiego). On their basis, the De Martonne aridity index [25]
(applied, for instance, by [26]) was calculated. The index was calculated for the time
between 1st March and 30th November. Winter precipitation of a particular year ranged
from the beginning of December in the previous year until the end of February in the year
of interest.

Table 2. Measurements information and parameters included in the models.

Year Omitted Time-Series SDI}pcar * De Martonne Index 2 Winter Precipitation 3
(%) (trees ha—1) (mm °C-1) (mm)
2011 41 14.6 834 (455) 5.9 96
2012 30 37.5 803 (460) 8.2 28
2013 37 229 896 (485) 18.3 109
2014 34 29.2 882 (485) 11.1 177
2015 31 35.4 794 (441) 9.7 55
2016 40 16.7 794 (436) 11.2 127
2017 14 70.8 711(239) 5.5 63
2018 15 68.8 736 (249) 20.2 99

! The competition index SDIj,c, was calculated once in 2011 and assumed to be constant for all following years.
Mean value and standard deviation in brackets. 2 Defined between 1st March and 30th November. 3 Defined
between 1st December in previous year and 28th (29th) February in the year of interest.

2.3. Data Preparation

We chose the basal area (Figure 3b) instead of the diameter (Figure 3a) to represent the
different tree sizes. In addition, the basal area growth of a year was normalized by the total
basal area growth of that year to get the annual relative basal area growth RelBA (Figure 3c);
multiplying by 100, the unit of the annual relative basal area growth was percent (%).

For further analysis, we calculated the day of the year (DOY)—based on the individual,
idealized intra-annual growth pattern—when 25%, 50% and 75% of the RelBA was achieved.
The non-parametric technique was closest to the measured data. Interpolation was used,
since days where 25%, 50% or 75% of growth were reached did not coincide with days of
single readings. The nearest surveys before and after were found, and the temporal distance
weighted mean between the two surveys was calculated to get the appropriate DOY.

2.4. Statistical Analysis

Linear mixed models were used to determine whether intra-annual growth, i.e.,
RelBA25, RelBA50 and RelBA75, was affected by social status, competitive situation, winter
rainfall and weather condition of the growth period. The basic formula encompassing all
possible explanatory variables was as follows (exemplarily shown for RelBA25):

RelBA25 = ag + ay X Social status + ap X SDljyeq + az x De Martonne index + aq X Winter precipitation + b; + byj + ¢;;

We considered random effects to match the error structure of the data. Parameters
b; and bj; were nested random effects at plot and tree-in-plot levels [27,28], i.e., trees that
came from the same plot (b;), and several time series were recorded from the same tree
(bjj). Although the random effects covered lots of the nested data structure, the presence
of autocorrelation was still possible [29]. Consequently, final models included an auto-
regressive correlation structure (“corAR1”) for fully modeling the time dependency [27].
The error term ¢;; and the random effects were normally distributed, with an expected
value of zero and constant variance.

We generated all 16 possible combinations from four explanatory variables. The
Akaike Information Criterion (AIC) was used as an adaptation criterion for the selection of
the best model [30]. Based on the AIC values with a delta of smaller than 4, we calculated
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Akaike weights to add a multi-model inference and to reflect model-selection uncertainty
more precisely [31]. The processing was performed within the programming environment
of R [32] and the R packages tidyverse [33], mgcv [34] and MuMIn [35].
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Figure 3. (a) The intra-annual course of the diameter (dbh) and (b) of the basal area of an example

tree. On average, 19.7 diameters per year and tree were recorded. (c) Based on an interpolation, the

day of the year (DOY) was extracted on which the relative basal area growth achieved 25%, 50% and

75% of the total annual growth.
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3. Results

Figure 4 shows the original data of 242 time series plotted against the day of the
year (DOY).

Annual basal area growth in %

100

80
Naeries = 242

Nrecordmgs = 4897

60

40

20

T T T
100 200 300 365
DOY

Figure 4. The intra-annual basal area growth pattern of all 242 time series.

On average, 25% of the total annual basal area growth was achieved on 25th April
(DOY =115), 50% on 1st June (DOY = 152) and 75% on 28th August (DOY = 213). Variation
increased from 15 days for RelBA25 to 37 days for RelBA75 (Figure 5).

DOY

365

115 152 213

(15) (20) (37)
200 o

—— I
100 - _
RelBA25 RelBA50 RelBATS

Figure 5. The distribution of the three different dependent variables used in this study: the days of
the year (DOY) when 25%, 50% and 75% of the total annual basal area growth were reached. Mean
value and standard deviation (italic and in brackets) are given.

There was no significant influence of rainfall in the previous winter on the intra-annual
basal growth. An increase in the De Martonne index caused a significant earlier attainment
of RelBA75. An increase of 1 mm °C~! led to an earlier attainment of 2.1 days. The impact of
SDI}ycq Was significant on RelBA50 and RelBA75. High competition (an increase of 100 trees
of a standardized dbh of 25 cm per ha) caused a delayed attainment of 1.3 days on Re/lBA50
and 2.1 days on RelBA75. Neglecting the nested structure of the data and looking at single
dependencies between intra-annual growth and tree characteristics, competitiveness and
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weather conditions, linear regression analysis did not reveal any influence of the social
status (Table 3).

Table 3. The results of 12 linear regression analyses between the three dependent (RelBA25, RelBA50,
RelBA75) and the four independent variables (social status, SDI},.,;, De Martonne index, winter
precipitation). Numbers in brackets next to the regression coefficients represent the standard error.
Significance: *** p < 0.001; ** p < 0.01; * p < 0.05, p < 0.1.

RelBA25 (Day of Year) RelBA50 (Day of Year) RelBA75 (Day of Year)
offset (suppressed) 114 (2) 153 (2) 208 (4)
Social status dominant 2.3 (2.0) —1.3(2.6) 8.4 (4.8)
p-value 0.249 0.629 0.0792
offset 115 (2) 142 (3) 196 (5)
SDIigcal slope 5.7 x 1074 1.3 x 1072 2.1 %1072
(ha 1) P (2.3 x 1073) (2.8 x 1073) (52 x 1073)
p-value 0.804 i i
offset 111 (3) 155 (3) 236 (6)
De Martonne index | 4.1 x 1071 —24 x 1071 -2.1
(mm°C-1) siope (2.2 x 1071 (2.8 x 1071 (0.5)
p-value 0.057 0.402 i
offset 119 (2) 156 (3) 225 (6)
) o —3.6 x 1072 —3.7 x 1072 -12x 1071
Wint tat
RSt slope (22 % 10°-2) (29 % 10°2) (53 x 10°-2)
p-value 0.110 0.209 0.021
n 242 242 242

In the more general approach, the best model describing ReIBA25 included the winter
rainfall of the previous year. RelBA25 came 5.1 days earlier, with 100 mm more winter
precipitation. Less arid conditions in the growth period, i.e., higher De Martonne index, led
to a later attainment of RelBA25 and an earlier attainment of ReIBA75. Trees” competition
was also important. SDI ., was part of the best model describing ReIBA50. An increase of
100 trees of a standardized dbh of 25 cm per ha caused a significant delay of 1.3 days on the
RelBA50. The social status was never part of the best model (Table 4).

Table 4. Mixed-model statistics; effect of SocStat, SDIlocal, DeMart and PrecWint on intra-annual
basal area growth. Numbers in brackets next to the regression coefficients represent the standard
error. Significance: *** p < 0.001; ** p < 0.01; * p < 0.05, p < 0.1.

RelBA25 [Day of Year] RelBA50 [Day of Year] RelBA?75 [Day of Year]
ap 114 (3) 146 (4) 229 (11)
. suppressed aq - - -
Social status dominant 79 (4.2)
S(lkD‘lIalg)?)al a _ 1.3 x 1072 ** (2.8 x 1073) 1.1 x 1073 (8.3 x 1073)

De Martonne index
(mm °C~1)

a3 6.1 x 1071 ** (2.2 x 1071) —2.0** (4.8 x 107 1)

Winter precipitation
(mm)

ay 5.1 x 1072 *(2.3 x 1072) 4.4 x 1072 (2.8 x 1072)

b; (o) 5.7 x 10~* 9.1 x10°* 13.4

by 93 x 104 14 x 1073 41 %1073

(o)

& 1.5 x 10! 1.9 x 10! 33 x 10!

(o)

@ 0.06 —0.02 —0.05
RMSE 15.1 19.0 329
AIC 0.385 0.248 0.300
weights
Nseries 242 242 242

Niree 46 46 46
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4. Discussion
4.1. The Influence of Weather Conditions on Growth

Higher winter precipitation produced an earlier reach of 25% of the intra-annual basal
growth. These results add information to studies conducted on the same stands [5] and
agree with previous studies of P. halepensis [36,37], which stated that carry-over effects from
the former growing season can substantially influence tree growth, especially in areas with
severe climatic conditions, as is the case in the study area. Reserves from the previous
growing season can affect wood allocation in the following year [38]. Such lag effects are
probably introduced by enhanced nutrient storage and a variety of climate and biological
processes, such as a later termination of the growing season [39].

Under a Mediterranean climate, growth is expected to be essentially limited by water
availability [40], and previous studies have analyzed the effect of water stress on the ratio of
transpiration to evapotranspiration [41]. The aridity index applied proved that the growth
is influenced by weather conditions in a different way at the earlier and the latter stages
of the growth period, also affecting its length. A high De Martonne index, meaning low
aridity, produced a delay on the reach of 25% of the intra-annual basal growth, and an
earlier reach of 75% of the intra-annual basal growth, resulting in a significantly shortened
length of the growth period. This result adds information to studies performed at the same
stands that defined soil moisture as the most important climatic driver of tree growth [5].

4.2. Can Thinning Mitigate Drought Stress?

The reduction in the competition that originated as a result of thinning improved the an-
nual growth of the remaining trees, which corresponds with many other reports [5,10,42—44].
Secondary tree growth has been proved to respond differently to climatic variations depend-
ing on tree density [10]. Nonetheless, few new studies have analyzed the thinning effects
on climate-growth sensitivity, especially in forests that are sensitive to drought, where the
combined effects of competition and drought are not completely understood [5,44—46].

Competition influenced the time when trees reach 50% of their total annual growth.
In stands with higher thinning intensity, trees reached 50% of their total annual growth
1.3 days later than in the stands with lower thinning intensity. Competition for resources
among trees has been broadly acknowledged as a key aspect of forest dynamics, affecting
ecological functions and biogeochemical cycling. Forest-management measurements have
even been recommended to reduce vulnerability to drought in the context of climate
change [42]. In semiarid ecosystems, higher density has been suggested to buffer or mitigate
the adverse effects of high competition for water during extreme climatic events [47,48],
especially in older stands, which become more susceptible to drought when thinned [49].
Forest managers might therefore consider the characteristics of their forest before reducing
tree density through thinning, since it modulates tree-growth performance, the influence of
climate on microclimatic conditions and mortality [4,46].

Some studies have previously pointed out the extension of the growing season after
thinning. The authors of [10,42] suggest that a reduction in competition through thinning
prolonged the growing seasons in Fagus sylvatica L. and Abies pinsapo Boiss. The main
factors stimulating this process are more radiation and/or higher air and soil temperature
generated after thinning [44].

4.3. The Impact of Social Status on Intra-Annual Growth Pattern

The social status of the trees had no influence on the moment they reached 25%,
50% and 75% of their total annual growth. These results complement the results found
in previous studies on the same stands [5], which concluded that the growth rates of
dominant trees (larger DBH) were significantly higher than the growth rates of suppressed
trees (smaller DBH). The demands on water and nutrient supplies, hydraulic resistance
and photosynthetic rates are physiological processes associated with tree size [50] and, as
a result, growth-related environmental signals are expected to be size-dependent [51]. In
general, suppressed trees have more restricted access to soil water reserves than dominant
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trees because of their shallower and less developed root systems, especially in semi-arid
environments and in high-density stands [5]. In consequence, their growth rates fluctuate
depending on short-term water reserves concentrated in surface soil layers, while dominant
trees with more developed root systems have better access to deeper water reserves,
showing more homogeneous growth rates [52]. Previous studies suggest that competition
affects tree growth by reducing the growth period in suppressed trees [53,54]. Our results
indicate that this continuous access to water reserves of dominant trees has a significant
impact on their total annual growth in comparison to suppressed trees but has no impact
regarding the length of their growth period, which is more dependent on the weather
conditions during the growth period.

4.4. Perspectives

It has been suggested that the resistance of individual trees to drought stress is im-
proved by thinning, since the reduction in stand density decreases the competition for
resources [47,55,56]. However, it should not be concluded that open stands are universally
desirable. Forest managers should maintain an adequate stand density in order to mitigate
the effect of climatic extremes, considering other ecosystem parameters such as tree age,
regeneration or soil protection [47]. In addition, the results show that the promotion of
more diverse stands mixing species with complementary temporal and spatial patterns of
water uptake will increase resilience to further growth declines.

5. Conclusions

Water availability was confirmed as the main driver of tree growth in Mediterranean
environments. Previous winter precipitation as a water reserve highly affected the growth
at the earlier stages of the growth period, while aridity affecting the growth at the latest
stages of the growth period also influenced its length. The reduction in the competition
through thinning significantly improved the growth of the remaining trees, especially at
the middle stages of the growth period. The social status of the trees had no influence on
the moment they reached the different benchmarks of their total annual growth. Forest
management through thinning confirmed its value for improving the effects of water
limitations on individual tree growth. These results may help managers understand how
the modification of stand density will differentially affect the growth responses of Pinus
halepensis to climate.
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