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Abstract
Mixed mountain forests, primarily made up of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.) and 
European beech (Fagus sylvatica L.), cover about 10 × 106 ha of submontane–subalpine altitudes in Europe. They provide 
invaluable ecosystem services, e.g. protection against avalanches, landslides or rockfall. However, pure Norway spruce 
stands have, since mediaeval times, been heavily promoted as productive stand types for salt works at sites naturally support-
ing mixed mountain forests. Damage to these secondary pure spruce stands has been steadily increasing in recent decades. 
Furthermore, due to their previous limitation due to low temperatures and a short growing season, forest ecosystems in 
higher elevations are expected to be strongly affected by climate warming. To address these problems, alternative manage-
ment concepts are being intensively discussed. A possible option to improve the stability and resilience of the stand is the 
transformation from pure Norway spruce stands into site-appropriate, sustainable and stable mixed mountain forests. In this 
study, we have tested seven different transformation scenarios (e.g. slit, shelterwood and gap-coupes, strip clear-cutting, do-
nothing) and their impact on five evaluation criteria (forest growth, economics, carbon sequestration, (stand) stability and 
biodiversity). As there are hardly any practical examples for some of the transformation scenarios available, we have used 
the forest growth simulator SILVA to assess whether the tested transformation scenarios differ in transformation success 
and to observe trade-offs between the criteria of evaluation. Of the investigated scenarios, we consider the ones with gap or 
slit-coupes with the most beneficial overall utility values for the portfolio of the five evaluation criteria. However, we showed 
with our results that it is possible, by means of several trajectories, to return destabilised forests to sustainable and stable 
systems. We showed that a transformation is realistic, even if sophisticated silvicultural concepts are not strictly pursued.
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Introduction

In addition to the often promoted Norway spruce (Picea 
abies (L.) Karst), mixed mountain forests also comprise 
silver fir (Abies alba Mill) and European beech (Fagus syl-
vatica L.). In the following, we refer to these tree species 
as spruce, fir and beech, respectively: They can success-
fully coexist in altitudes between ~ 600 and 1400 m above 
sea level and account for the largest potential share of natu-
ral forests in Southern Central Europe (Moning and Müller 
2008). More than half of Central Europe’s surface area con-
sists of mountain areas, which is where most of the existing 
forests are concentrated (CIPRA 2007).

The presented problem and solution of transforming 
from artificial to close-to-nature forest is of general impor-
tance for the forest management of mountain forests world-
wide (Kimmins and Blanco 2011). However, particularly 
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in mountainous areas, forests are of great ecological and 
socio-economic importance in Central and Eastern Europe 
due to their provision of various ecosystem goods and ser-
vices (e.g. Ellenberg 1988; Forest Europe 2011; Pretzsch 
et al. 2015; Mina et al. 2017). The strong topographic gradi-
ents and high relative relief strongly increase the propensity 
for soil loss through erosion (Panagos et al. 2015), as well 
as gravitational processes such as rockfall, avalanches and 
snow gliding (Rammer et al. 2015; Leitinger et al. 2018). 
Furthermore, mountain topography often facilitates heavy 
local precipitation events and thunderstorms, and human 
infrastructure is often restricted to flood-prone river val-
ley bottoms. As a consequence, the green infrastructure 
provided by forests is particularly relevant in mountainous 
countries. Due to their importance in buffering against the 
consequences of harsh mountain environments, mountain 
areas frequently have a substantially higher forest share than 
low-elevation areas (EEA 2010). They constitute regional 
hotspots of forest C storage (Nabuurs et al. 2008) and are 
estimated to contain 11% of current global biomass stocks 
(Erb et al. 2018). In addition to providing regulating services 
to local communities, mountain forests are thus also relevant 
for the global climate system.

Spruce, fir and beech have coexisted for thousands of 
years in mixture without active management or with close-
to-nature forestry across this region (Magin 1959; Preuhsler 
1979). Interactions between the three species according to 
the literature seem to be balanced, i.e. the interactions are 
neither one-sided against or in favour of one of the three 
species (Pretzsch et al. 2015). For example, in spring coni-
fers may benefit from the neighbourhood of leafless beech 
by already growing with improved access to water (Goisser 
et al. 2016; Rötzer et al. 2017). During the common growing 
season, however, the deeper roots of beech and fir (Leb-
ourgeois et al. 2013) can provide better water supply at the 
expense of the shallow-rooted spruce. Moreover, in mixed 
mountain forests spruce and fir are typically higher than 
beech and can pre-empt the light due to their occupation of 
the upper canopy layer (Pretzsch et al. 2015). On the other 
hand, the high morphological plasticity enables beech to 
more quickly occupy the empty space in case of disturbances 
(Bayer and Pretzsch 2017).

Both conifers reflect an isohydric strategy (Lyr et al. 
1992) and show higher stem and root growth during pro-
longed time spans under drought than beech (Leuschner 
2009; Nikolova et al. 2009). While the hazardous behaviour 
of the anisohydric beech can lead to tree mortality under the 
impact of extreme water shortage, the behaviour can be ben-
eficial when water is abundant or moderate drought stress 
(e.g. Klein 2014). There are more structural and functional 
traits such as crown plasticity (Jucker et al. 2015; Forrester 
and Albrecht 2014), rooting depth (Rothe 1997; Schmid and 
Kazda 2002), litter decomposition (Rothe and Binkley 2001) 

and browsing pressure (Ammer 1996) that prevent any one 
of the three species from becoming a permanent winner or 
loser, and despite their effects changing with climate and 
growing conditions, the balance between the tree species is 
maintained.

In terms of stand growth, Hilmers et al. (2019) found that 
mixed mountain forest ecosystems are rather resilient against 
disturbances such as acid deposition, climate warming and 
ozone. As growth reductions in one of the three species were 
compensated by a growth increase in the others, the stand 
productivity of mixed mountain forests of spruce, fir and 
beech in total has hardly changed over the last 30 years. One 
possible reason for this finding is that the potential dam-
ages are rather equally distributed, with late frost and ozone 
susceptibility of fir and beech (Larsen et al. 1990; Matyssek 
et al. 2010), the high sensitivity to smoke damage and acid 
deposition of fir (Elling et al. 2009), the high risk of bark 
beetle (Wermelinger 2004) and snow and storm damage 
(Spiecker 2000) of spruce. This temporal, spatial and func-
tional complementarity and risk distribution may contribute 
to the overyielding of spruce and beech (Pretzsch et al. 2010; 
Rothe 1997), spruce and fir (Jensen 1983; Pretzsch et al. 
2010; Vallet and Pérot 2011; Forrester and Albrecht 2014), 
and spruce, fir and beech (Pretzsch and Forrester 2017; Mina 
et al. 2018).

However, mixed mountain forests have often suffered 
a reduction in species richness. In the German Alps, for 
instance, spruce has, since medieval times, been heavily 
promoted as a productive timber species for salt works at 
sites naturally supporting mixed mountain forests (Seidl 
et al. 2007). Damage to these secondary pure spruce stands, 
however, has been steadily increasing in recent decades (e.g. 
Briner et al. 2013). These forests are particularly vulner-
able to summer droughts (Lévesque et al. 2013; Zang et al. 
2014), extensive bark beetle outbreaks (Seidl et al. 2014) and 
pathogens (Porta et al. 2008). All are then further favoured 
by a warmer and possibly drier climate (e.g. Matulla et al. 
2002; Lexer et al. 2002; Pepin et al. 2015). Marini et al. 
(2012) found that forest disturbance in the European Alps 
was seven times higher where spruce was planted in sites 
that were warmer than those within its historical climatic 
range. However, the importance of whether spruce grows 
within or outside its native range is decreasing as climate 
conditions are changing rapidly. Climate change-driven dis-
turbances threaten spruce over virtually its entire range in 
Europe, and some recent disturbances have, for instance, 
already reached native subalpine spruce forests close to the 
timber line in the Alps (Hlásny et al. 2019). In addition, the 
repeated cultivation of pure spruce stands has a negative 
effect on soil fertility (Seidl et al. 2007).

To address these problems, alternative management 
methods are being intensively discussed (Reininger 2000; 
Spiecker et al. 2004; Löf et al. 2010). A possible option 
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to improve the stability and resilience of the stand against 
abiotic and biotic disturbing factors, as well as to increase 
productivity, is the transformation of pure spruce stands 
to site-appropriate mixed mountain forests (Spiecker et al. 
2004; Seidl et al. 2011; Pretzsch and Forrester 2017; Hilm-
ers et al. 2019). This transformation has two aspects: (1) a 
change in the species composition from pure to mixed stands 
and (2) a change in the stand structure from regular, even-
aged stands to more complex, uneven-aged stands.

The advantages of more complex forest stands, for exam-
ple their higher stability against various disturbances and 
their superiority regarding many ecosystem services, attract 
attention (Bauhus et al. 2017; Bravo-Oviedo et al. 2018). 
Thus, at present there is a tendency towards transformation 
of age-class monocultures to continuous covered forestry 
worldwide (Vitkova and Dhubháin 2013). An important 
argument for fostering more diverse forests, containing both 
early- and late-successional species, is the insurance hypoth-
esis. This states that diverse ecosystems are better buffered 
against disturbances (have higher resistance) and recover 
more quickly (have higher resilience; Jactel et al. 2009). Spe-
cies diversity can mean risk distribution in view of abiotic 
and biotic disturbances, stability of growth and permanent 
protection function (soil erosion, avalanches, flooding). Such 
mixtures recover considerably faster from disturbances than 
other ecosystems, due to their elevated response diversity. 
Moreover, higher stand diversity is positively associated 
with the supply of many ecosystem services.

The state-of-the-art silvicultural approach in the Alps 
consists of small, irregular patch cuts for regenerating the 
forest and maintaining a high level of forest canopy cover in 
space and time (Cordonnier et al. 2008; Streit et al. 2009). 
It aims at the supply of regulating services and maintain-
ing a relatively continuous forest cover, while enhancing 
resistance and resilience to disturbances (Dorren et al. 2004; 
Brang et al. 2006). However, management is complicated 
by steep terrain and low accessibility, which requires highly 
specialised harvesting technologies, (e.g. cable line systems) 
and results in high management costs (Valente et al. 2014; 
Jandl et al. 2018). As an alternative, one could adopt a more 
differentiated strategy, maintaining the existing mixed moun-
tain forests, but transforming pure spruce stands to mixed 
mountain forests of mainly spruce, fir and beech. Such a 
strategy is already applied by some forest enterprises (e.g. 
Bayerische Staatsforsten AöR 2018).

There are hardly any existing practical examples for 
both maintenance and transformation. Thus, simulations 
with the forest growth simulator SILVA 2.3 (Pretzsch and 
Kahn 1996; Pretzsch et al. 2002) served as a supporting 
tool to assess whether the tested transformation scenarios 
are successful. Growth models integrate the knowledge 
about the growth of trees and stands; they can reproduce 
the growth behaviour of stands with which parameters 

have been set. After appropriate calibration and valida-
tion, however, they are also suitable for reproducing stand 
development for which there are no sample or illustrative 
examples yet. For example, simulation models can be used 
to simulate the consequences of new types of thinning, cre-
ation of infrastructures or climate change. The prerequisite 
for this is that the model internal growth functions repro-
duce the tree and stand reactions for a broad spectrum of 
competitive and neighbourhood situations, as well as site 
conditions, in a biologically plausible way. If this is the 
case, models can effectively contribute to the development 
of new management guidelines for forest management in 
the high mountains (Pretzsch 2019). Besides the state-of-
the-art silvicultural approach in the Alps, however, other 
silvicultural systems (e.g. gap and strip clear-cut-coupes) 
were to be compared on multiple criteria.

In addition to topics in numerous studies on the eco-
nomic aspects of forest transformation (Knoke et al. 2001; 
Hanewinkel 2001; Knoke and Plusczyk 2001; Knoke et al. 
2008; Roessiger et al. 2011; Messerer et al. 2017; Beljan 
et al. 2018), we investigated the effects of forest transforma-
tion on the habitat complex of mixed mountain forests taking 
a holistic approach. In this sense, the present contribution 
was devoted to the evaluation of multiple criteria of differ-
ent forest transformation systems of secondary pure spruce 
stands, taking into account the criteria of forest growth, eco-
nomics, carbon sequestration, stand stability and biodiver-
sity. Wood production (forest growth, economics) provides 
renewable raw materials that are in high demand and wood 
production jobs are maintained therewith (Sikkema et al. 
2011; Hetsch 2008). Carbon sequestration contributes to the 
mitigation of climate change and can be fostered through 
both afforestation and forest management (Naudts et al. 
2016). Stand stability is fundamental for providing regulat-
ing services to society (Moos et al. 2018; Altieri et al. 2018), 
and biodiversity is likely to play a key role in mediating 
the relationship between plants and ecosystem processes by 
influencing the physiology, activity and population dynamics 
of plants (Weisser and Siemann 2013). The selected criteria 
are strongly related to the criteria for ecological, economic 
and social sustainable forest management (MCPFE 1993) 
which include the care for (1) forest resources, (2) forest 
ecosystem health and vitality, (3) productive functions, (4) 
biological diversity, (5) protective functions and (6) socio-
economic functions.

The specific objectives of the contribution were (1) to 
identify possible paths that can be followed to transform 
characteristic pure spruce stands into semi-natural mixed 
forests at equilibrium using different forest management 
scenarios and to evaluate (2) if the investigated manage-
ment methods yield stable stands over the long run; and 
(3) how the different scenarios differ in terms of forest 
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growth, economics, carbon sequestration, stand stability 
and biodiversity.

Materials and methods

Secondary pure spruce forests

Starting point for the simulations was formed by a total of 30 
different pure spruce stands (Table 1), which were generated 
by the structural generator, STRUGEN (Pretzsch 1997). Ini-
tial data for the simulation and the assumed site productivity 
were deduced using inventory data of forests in the Bavarian 
Alps. All the simulated plots covered 2 ha each, at an age of 
30 to 40 years, on sites of the ‘Oberbayerische Flyschvoralpen’ 
(800–1200 m above sea level, good site conditions). Single-
layered initial stands were characterised by an average basal 
area of 32.8 m2 ha−1 with an average volume of the remaining 
stands of 181 m3 ha−1 (Table 1).

Silvicultural goals

Assuming the help of cable yarding operations, these pure 
spruce stands were to be transformed to semi-natural mixed 
mountain forests of beech, spruce and fir at equilibrium. These 
multi-layered mixed mountain forests should have a mixture 
of 30–40% of species other than spruce and, if at equilibrium, 
an exponentially decreasing stem distribution. In addition, this 
forests should be uneven-aged, show a high structural diver-
sity as well as an advanced regeneration layer, containing 
both early- and late-successional species, on as large an area 
as possible. By regular moderate treatments, the volume of the 
remaining stand is kept on an optimal level, so that the desired 
structural diversity and a continuous natural regeneration are 
obtained. While on rich sites, a volume of the remaining stand 
of 400–500 m3 ha−1 is aimed at, a volume of the remaining 
stand of 300–400  m3 ha−1 is targeted on mesic sites. In order to 
avoid growth reduction, the respective lower value should not 
be undercut over a longer period of time. Very poor sites were 
not taken into account, as regular management often takes a 
back seat in these areas and aspects of forest conservation and 
protection forest management are in the foreground.

Silvicultural scenarios

The state-of-the-art silvicultural approach in the Alps (e.g. 
Bayerische Staatsforsten AöR 2018) is intended to aim at 

transforming secondary pure spruce stands into semi-natural 
mixed forests at equilibrium. To sustain the unique func-
tions and services of mixed mountain forests, the natural gap 
dynamics of mountain forests are emulated by silviculture (e.g. 
Acevedo et al. 1996; McCarthy 2001; O’Hara 2001; Ciancio 
et al. 2006). In this context, the most common silvicultural 
prescription for management is the combined shelterwood 
and femel-coupe system, which is composed of several stages: 
spruce stands at the age of 40–60 years are slightly opened up 
homogeneously over the whole stand area to promote natural 
regeneration and stability (shelterwood-coupe). Above these 
patches of forthcoming regeneration, the canopy is opened up 
continuously or removed completely in one pass (femel-coupe) 
and missing tree species are planted. In the areas between the 
regeneration slits, only very cautious interventions (target 
diameter harvest) take place in order to maintain the volume 
of the remaining stand between 400 and 500 m3 ha−1 depend-
ing on site conditions. With the progressing regeneration of 
all three species, the regeneration slits are gradually extended 
by harvesting trees at the edges during the femel-coupe. By 
removing the overstorey step by step, 40–60 years after the first 
harvest, the whole stand area is regenerated as the regenera-
tion patches grow together. Except for the initial shelterwood-
coupe, any remaining thinning operations always only take 
place on every second cable line. After two operations on the 
same cable lines, the cable lines are changed. Thus, only half 
of the area is worked at a time, and the creation and expansion 
of the regeneration slits take place at different times. This pro-
cedure ensures that a heterogeneous vertical structure is cre-
ated and that the cable lines can also be used over long periods 
of time. In order to validate the state-of-the-art silvicultural 
scenarios, the evaluation of multiple criteria was also applied 
to conventional management methods, such as strip clear-cut 
and gap-coupe (Mosandl 1984; Table 2).

From silvicultural guidelines to scenario simulation

All simulations for stand development and timber production 
were carried out with the single-tree, distance-dependent for-
est growth simulator, SILVA 2.3 (Pretzsch and Kahn 1996; 
Pretzsch et al. 2002). Due to the partly stochastic character 
of SILVA, every simulation run can, despite identical start-
ing conditions and treatment programmes, produce different 
results. Since the regeneration phase, in particular, provides 
crucial information for forest transformation concepts, SILVA 
also includes a regeneration module. Simulations with SILVA 
were performed as sequences of five-year time steps. In order 

Table 1  Key forest growth data 
of the simulation stands

N, stem number per hectare; dg, diameter of mean basal area; hg, mean height corresponding to dg

Species Age (years) N (n ha−1) hg (m) dg (cm) Basal area  (m2 ha−1) Volume  (m3 ha−1)

Spruce 30–40 2486 ± 92 10.7 ± 0.25 12.2 ± 0.25 32.8 ± 1 181.6 ± 12
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to cover an overall simulation time span of 150 years, we simu-
lated 30 such five-year periods in each run. This means that the 
development of an entire forest life cycle could be simulated. 
In addition, the ‘silvicultural treatments’ (e.g. gap, femel and 
shelterwood-coupe) and ‘creation of infrastructures’ (e.g. cable 
crane and cable lines) modules were supplemented for the pre-
sent comparison of different silvicultural scenarios. The results 
of the wood sorting were calculated using the SorSim program 
(Lemm et al. 2013). Cable lines, femel gaps and planting were 
created outside the simulator using the data handling features 
of the R software (R Core Team 2018). The stored carbon 
quantities in wood products, and the substitution of stored 
carbon by the energetic use of biomass, were calculated using 
a harvested wood products (HWP) model from Klein et al. 
(2013). Comparisons of the results of the different silvicultural 
scenarios were made using R (R Core Team 2018), specifically 
employing the dplyr package (Wickham et al. 2018).

Validation of the simulation results

The simulation results were finally compared with the results 
from long-term experimental plots. For the validation, data 
from two sets of long-term experimental plots were used. 
On the one hand, we used data from 22 mixed mountain 
forests long-term experimental plots comprising beech, 
spruce and fir at elevations of between 850 and 1240 m a.s.l. 
in the catchment area of the Northern Limestone Alps in 
Bavaria (Southern Germany). These plots were established 
in order to investigate the influence of different silvicultural 
treatments (femel-shelterwood-coup) on the regeneration 
dynamics and volume increment and were established in the 
1970s (Pretzsch et al. 2015). Moreover, we have compared 
our results with data from 14 long-term experimental pure 
spruce plots on high-performance sites in southern Bavaria 
(Röhle 1995).

Evaluation criteria

To engage in differentiated discussions on all transforma-
tion scenarios (Table 2) five criteria (forest growth, econom-
ics, carbon sequestration, stand stability and biodiversity) 
were defined. The results of each silvicultural scenario and 

criterion were displayed scaled (best: 1, worst: 0; Koschke 
et al. 2012; Knoke et al. 2014). Each criterion was, in turn, 
made up of different factors (see Table 3). The efficiency 
of each scenario was quantified by summing the score of 
each of the studied criteria. To provide a measure of stability 
between the categories, the standard deviation (SD) for each 
forest transformation scenario was also determined. 

Forest growth

The criterion forest growth consisted of the factor’s total 
productivity, mortality over the entire simulation period 
and the standard deviation of tree heights as a proxy for 
a shelter in the event of a disturbance. If the overstorey is 
lost to disturbances, the understory can immediately utilise 
the increasingly available resources such as light, water and 
nutrients and take over important forest functions. In order 
to include the temporal component, the time since simula-
tion start was classified into five classes (25 ± 10, 50 ± 10, 
75 ± 10, 100 ± 10 and 125 ± 10 years), and averages of each 
class were obtained. Each of the five values was included in 
the evaluation without weighting.

Economics

The harvested trees were graded after each simulation period 
with the help of SorSim (Lemm et al. 2013) without the dead 
wood fraction. The revenues were calculated using averaged 
timber prices provided by the Bavarian State Institute of 
Forestry (LWF) for 2010–2015. Harvesting costs were cal-
culated at 48 € m−3, planting costs at 6400 € ha−1 for beech, 
1600 € ha−1 for spruce and 2700 € ha−1 for fir. The net pre-
sent value (NPV) was calculated using three different dis-
count rates: 1%, 2% and 3%. The presented results included 
the financial value of the standing timber at the end of the 
simulation period.

Carbon sequestration

In order to calculate the stored in situ carbon quantities of 
the simulation results, both the above-ground biomass, using 
species-specific biomass formulae (Pretzsch et al. 2014), as 

Table 3  Overview of the categories defined for the comparison of the different forest transformation scenarios and their factors

Each factor was included in the evaluation of the respective category without weighting

Forest growth Economics (net present 
value) (%)

Carbon sequestration Stability Biodiversity (number of 
species)

Total productivity
Mortality
Standard deviation of tree 

heights

1
2
3

In situ + ex situ in wood 
products + substitutions of 
fossil fuels

Survival probability of 
spruce * potential dam-
aged timber

Spruce proportion in the 
last simulation period

Flora
Fauna
Fungi
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well as the underground biomass, with a root factor (root/
shoot) according to Offenthaler and Hochbichler (2006), 
were estimated. The ex situ carbon content in wood products 
and the substitution quantities resulting from bioenergy use 
(wood combustion) were calculated using a harvested wood 
products (HWP) model from Klein et al. (2013). In present-
ing the C sequestration potential of forest management on a 
per hectare basis, we used the levelisation approach, where 
the periodic C flows were summed up and discounted with 
an assumed social interest rate of 2% (e.g. Hoen and Solberg 
1994).

Biodiversity

The number of species of (1) flora, (2) fauna and (3) fungi 
were selected as indicators for a non-wood forest function. 
In order to determine the number of species of flora, fauna 
and fungi, each of the 30 stands was divided into 1000-m2 
grids. According to Zenner et al. (2016), each raster was 
then assigned to one of nine forest successional stages (gap, 
regeneration, establishment, early optimum, mid-optimum, 
late optimum, plenter, terminal and decay). Finally, based 
on the results of Hilmers et al. (2018), the number of spe-
cies of flora (higher plants, lichen and mosses), fauna (phy-
tophagous and pollinating arthropods, vertebrates and inver-
tebrates feeding on animal tissue, species feeding on dead 
tissue and species depending on dead wood during their 
life cycle) and fungi was able to be assigned to the indi-
vidual forest successional stages. The species numbers of 
the entire 2-ha plots consisted of the average of all 1000 m2 
large squares. Standard deviations were also calculated again 
using the average of each of the five classes since simualtion 
start (see above).

Stability

The calculations of the stability of the stand against natu-
ral disturbances were calculated on the basis of a model 
developed by Roessiger et al. (2013). In a mixed stand, the 
survival probability of the spruce was calculated by means 
of a Weibull function (Weibull 1951) depending on the per-
centage of spruce and age. The probabilities of beech and 
fir survival were assumed to be independent of the percent-
age of spruce (Roessiger et al. 2013). Using the five classes 
since simulation start (see above), the survival probabilities 
were calculated at different simulation points in time. These 
survival probabilities were then multiplied by the potential 
amount of damaged wood volume (all spruce trees higher 
than 66% of the mean height of the 100 thickest spruce 
trees). They were then included in the valuation as separate 
factors without weighting. Assuming that stable stands at the 
end of the simulation could either appear due to the young 

age of the spruce, or due to a low proportion of spruce, the 
share of spruce of the total stand in the last simulation period 
was used as an additional factor. Since those stands with a 
high proportion of spruce and young age will become unsta-
ble again in the future, those stands with a lower proportion 
of spruce were rated as better.

Results

Apart from the strip clear-cut and the do-nothing scenario, 
all the methods were successful for transformation into 
semi-natural mixed forests at equilibrium. Although natural 
regeneration of beech and fir was always present in the strip 
clear-cut scenario, spruce dominated the advanced devel-
opment phases of the stands. In the do-nothing scenario, 
no or very little natural regeneration occurred. Differences 
between the shelterwood, slit and gap scenarios are shown 
in terms of their specific criteria.

Validation of the simulation results

Figure 1 shows the periodic annual increment versus the 
volume of the remaining stand in each simulation period. 
The results of the do-nothing scenario showed that long-
term experimental plots made of pure spruce showed higher 
growth rates at the same volumes of the remaining stand 

Periodic annual volume increment [m3*ha-1*year-1]

Volume [m³*ha-1]

40
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0 0 500 1,000 1,500 2,000

DN
G

LTEP-Spruce
LTEP-MMF

SH2
SH1

SL1

SC
SL2

Fig. 1  Relationship between stand periodic annual volume incre-
ment and volume of the remaining stand. Black dots show the results 
from long-term experimental plots consisting of pure spruce (LTEP-
Spruce); grey dots show the results from long-term experimental 
plots consisting of spruce, fir and beech (LTEP-MMF). Other sym-
bols show the simulation results of various forest transformation 
scenarios. DN, do-nothing scenario; G, gap-coupes with planting of 
beech and fir; SH1, shelterwood-coupes with natural regeneration; 
SH2, shelterwood-coupes with planting of fir and beech; SL1, slit-
coupes with natural regeneration; SL2, slit-coupes with planting of 
fir and beech; SC, strip clear-cutting with natural regeneration. See 
Table 2 for a detailed description of the different scenarios. For inter-
pretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article
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than experimental plots from the mixed mountain forest 
zone (beech, spruce and fir). The results from the simula-
tions for all scenarios were lying between the results of the 
long-term experimental plots.

Forest growth

The stand periodic annual volume increment (PAIV) of the 
slit and shelterwood scenarios stabilised from a stand age of 
around 80 years to a value of approx. 10 m3 ha−1 year−1 and 
formed a steady state until the end of the simulation (Fig. 2). 
Volume of the remaining stand in the slit and shelterwood 
scenarios quickly leveled out between 400 and 500 m3 ha−1. 
Figure 3 shows how the slit scenario approaches a possible 
steady-state curve in the simulation run after 150 years. It is 
striking how the ‘gap’ in the diameter frequency distribution 
between 20 and 30 cm, still visible after 110 years of simula-
tion, was filled after 130 years of simulation. 

However, due to higher stand densities, the PAIV of the 
do-nothing scenario was higher than for all other scenarios 
over the entire simulation period (Fig. 2). In the case of 
standing volume and PAIV, the strip clear-cut scenario was 
similar to that of the do-nothing scenario up to the time of 
the first treatment. The gap scenario also showed the great-
est fluctuations in terms of PAIV, similar to the standing 
volume.

Economics

In terms of economics, the results were similar for most 
management scenarios. Just the results of the do-nothing and 
the strip clear-cut scenario differed from the others (Figs. 4, 
S1). The do-nothing scenario showed, due to the potential 
liquidation value of the portfolio at the end of the simulation 
period, comparable net present values only in the calcula-
tion of the net present values with a 1% discount rate. As the 
discount rate increased, the net present value droped sharply 
and was significantly smaller than in the other scenarios. 

0
50 100 150

Stand age [years]
Periodic annual volume increment [m3*ha-1*year-1]B

A
2,000

Volume [m3*ha-1]
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SH1
SH2
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SL2 SC

Fig. 2  Volume of the remaining stand in  m3 ha−1 (a) and stand peri-
odic annual volume increment in  m3  ha−1  year−1 (b) with standard 
errors, resulting from different tree growth between 30 simulations, 
above stand age of all the simulated transformation scenarios. DN, 
do-nothing scenario; G, gap-coupes with planting of beech and fir; 
SH1, shelterwood-coupes with natural regeneration; SH2, shelter-
wood-coupes with planting of fir and beech; SL1, slit-coupes with 
natural regeneration; SL2, slit-coupes with planting of fir and beech; 
SC, strip clear-cutting with natural regeneration. See Table  2 for a 
detailed description of the different scenarios.  For interpretation of 
the references to colour in this figure legend, the reader is referred to 
the web version of this article

Fig. 3  Stem distribution (N/
ha for DBH-classes) of the slit-
coupe scenario with planting 
of fir and beech after 100, 110, 
120, 130 and 150 years of simu-
lation. The curve corresponds 
to a steady-state condition for 
uneven-aged stands of spruce, 
which could be reached in the 
long run (Prodan 1944). Note 
that the number of trees per hec-
tare and DBH-classes was log 
transformed
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A very similar pattern can be observed in the strip clear-
cut scenario. Even if it was still the best variant in the cal-
culation with a discount rate of 1%, it fell behind the slit, 
shelterwood and gap variants in the calculation with higher 
discount rates. The slit, shelterwood and gap variants only 
differed in the planting costs of beech and fir and otherwise 
showed very similar results. However, the planting costs had 
a very strong impact on the net present values.

Carbon sequestration

Table 4 shows the mean carbon sequestration of the seven 
transformation scenarios, as well as the in situ storage, the 
carbon storage in wood products and the substitution of fos-
sil fuels. The do-nothing scenario showed the highest in situ 
storage. Due to the lack of intervention, however, no carbon 
was stored in wood products or achieved by substituting fos-
sil fuels. Overall, the do-nothing variant was, therefore, the 

one with the lowest carbon sequestrate values. Highest val-
ues were achieved by the strip clear-cut and gap scenarios. 
While the strip clear-cut scenario showed high in situ car-
bon storage values, the gap variant had higher values in the 
areas of wood products and substitution of fossil fuels. The 
shelterwood and slit scenarios showed similar values with 
slightly higher values in the scenarios with natural regenera-
tion. Overall, our results showed that the substitutions of 
fossil fuels were the most important factor to consider when 
looking at total carbon sequestration.

Stability

In terms of stability, we found the highest potential damages 
of spruce caused by disturbances in the do-nothing scenario 
(Fig. 5). Survival probabilities decreased with age. As we 
found the highest values of volume of the remaining stand, 
the potential damaged wood volume was also the highest 
for this scenario. For the other scenarios, the survival prob-
abilities decreased for the first 100 years of simulations and 
then after increased. The proportion of spruce was 100% in 
the do-nothing and the strip clear-cut scenario at the end of 
the simulation runs. In case of slit and shelterwood, the pro-
portions of spruce at the end of the simulations were higher 
in the scenarios with natural regeneration, than in the ones 
with plantings of beech and fir. Although beech and fir were 
planted in the gap scenario, the proportion of spruce at the 
end was still high (75%).

Biodiversity

For all three kingdoms (flora, fauna and fungi), considerable 
changes in the potential number of species were observed 

Fig. 4  Boxplots of the net present values of the different transforma-
tion scenarios. The net present value is calculated using three differ-
ent interest rates: 1% (a), 2% (b) and 3% (c). The presented results 
include the potential liquidation value of the portfolio at the end of 
the simulation period. DN, do-nothing scenario; G, gap-coupes 
with planting of beech and fir; SH1, shelterwood-coupes with natu-

ral regeneration; SH2, shelterwood-coupes with planting of fir and 
beech; SL1, slit-coupes with natural regeneration; SL2, slit-coupes 
with planting of fir and beech; SC, strip clear-cutting with natural 
regeneration. See Table  2 for a detailed description of the different 
scenarios

Table 4  Mean C sequestration (tC  ha−1) according to the levelisation 
approach in the different scenarios over 150 years

See Table 2 for abbreviations and a detailed description of the differ-
ent scenarios

Scenario In-situ Wood products Substitution Total

DN 171.5 0.0 0.0 171.5
G 47.5 30.9 321.5 399.9
SH1 47.8 27.6 258.9 334.4
SH2 48.4 26.8 249.1 324.3
SL1 49.1 26.7 262.1 337.9
SSL2 52.4 25.3 247.7 325.4
SC 110.9 15.8 275.3 401.9
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over the simulation runs (Fig. 6). Vascular plants are directly 
dependent on sunlight reaching the forest floor. In the do-
nothing scenario, little natural regeneration has occurred 
and mortality has opened the canopy over time. Thus, more 
sunlight could reach the forest floor. Therefore, we found 
the highest numbers of vascular plants in the do-nothing 
scenario after 100 years of simulation (which means a stand 
age of > 140 years; Fig. 6a). We observed a similar trend 
in the strip clear-cut scenario. However, due to the natu-
ral regeneration, the canopy closed again after the silvicul-
tural treatments and the number of vascular plants species 
decreased at the end of the simulation runs. Starting with the 
first silvicultural treatments, we found increasing numbers 
of vascular plants species during the first 50 years of simula-
tion in the slit and shelterwood scenarios. After 70 years of 
simulation, the number of vascular plants species decreased 
due to increasing canopy density and outshading and was 
constant during the last 50 years of simulation. We found 
a similar pattern in the gap-coupes scenario. However, due 
to the strong silvicultural treatment towards the end of the 
simulation, the number of species increased again in this 
scenario.

As consumers depend on the primary producers, the num-
ber of species in the fauna kingdom showed very similar 
trends (Fig. 6b). The number of species rose sharply for a 
period in the slit, gap and shelterwood scenarios (open cano-
pies), decreased afterwards and were constant at the end of 
the simulation runs. Again the number of species increased 
at the end of the simulation runs in the gap scenario. The 
do-nothing scenario showed a high number of species after 
100 years of simulation.

Contrasting to the kingdoms of flora and fauna, the 
number of fungi species are following a bell-shaped 

pattern along forest succession. We found an increasing 
number of species of fungi in the do-nothing and strip 
clear-cut scenarios peaking at 50  years of simulation 
(Fig. 6c). While we found just a slight decrease in the 
number of species in the do-nothing scenario afterwards, 
the number of species decreased drastically in the strip 
clear-cut scenario due to starting silvicultural treatments. 
In the slit and shelterwood scenarios, the number of spe-
cies was lower during the first 70 years of simulation. 
However, as canopy density increased the number of 
fungi species was highest in these scenarios during the 
last 80 years of simulation. A different pattern was found 
in the gap-coupes scenario. In this scenario, the number of 
species was lowest during the first 70 years of simulation, 
increased afterwards with a peak at 130 years of simula-
tion and slightly decreased at the end of the simulation 
runs.

Evaluation with multiple criteria

Figure 7 shows the results of the overall evaluation with 
regard to the individual scenarios concepts. The do-noth-
ing scenario showed the best biodiversity performance and 
ranked last for the other four criteria. The slit scenario 
with natural regeneration, slit with planting and the gap 
scenario showed balanced results in all categories. The 
results of the shelterwood scenario with natural regen-
eration, shelterwood with planting and the strip clear-cut 
scenario showed divergent results between the criteria. In 
order to illustrate the divergence of all the criteria within 
a silvicultural scenario, the standard deviation of each sce-
nario between the categories was calculated (Fig. 8). This 
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Fig. 5  Relationship between the potential damaged wood volume 
and the time since simulation start of all simulated scenarios (a) 
and the proportion of spruce in the last simulation period (b). Lines 
were generated by fitting a loess curve. DN, do-nothing scenario; G, 
gap-coupes with planting of beech and fir; SH1, shelterwood-coupes 
with natural regeneration; SH2, shelterwood-coupes with planting of 

fir and beech; SL1, slit-coupes with natural regeneration; SL2, slit-
coupes with planting of fir and beech; SC, strip clear-cutting with 
natural regeneration. See Table 2 for a detailed description of the dif-
ferent scenarios. For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article
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approach enables a direct comparison of the individual 
silvicultural scenarios based on the total score. Scenarios, 
such as the slit scenarios with a high total score and small 
standard deviations between the scores, can be described 
as stable. The shelterwood scenarios show a relatively 
high total score, but at the expense of a higher standard 
deviation. 

Discussion

It was shown that it might be possible to transform second-
ary pure spruce stands to stable mixed mountain forests with 
five of the seven scenarios (H1). It is also these five scenar-
ios (gap, shelterwood, slit) which are expected to maintain 
these structures in the long term with regular forest inter-
ventions (H2). The evaluation of multiple criteria allows 
the seven scenarios to be divided into three groups. The 
do-nothing scenario only achieved the highest score in the 
category of biodiversity. The shelterwood and strip clear-cut 
scenarios showed highly divergent scores, while the slit and 
gap scenarios achieved high scores in all categories (H3).

While the management scenarios studied here mimic cur-
rent management recommendations (Mosandl 1984; Streit 
et al. 2009; Bayerische Staatsforsten AöR 2018) in a highly 
realistic manner, it was applied uniformly across all the sim-
ulation runs. This approach disregards the potential adap-
tive measures of managers (Yousefpour et al. 2017), which 
are increasingly likely as climate change impacts worsen 
(Blennow et al. 2012; Seidl et al. 2016). Furthermore, it is 
unrealistic to presume constant site and climatic conditions 
for the next 150 years, as chosen in the present investiga-
tion. The simulation of a site-condition drift is, in principle, 
possible with the used growth model by changing the height 
or diameter-growth potential over time. For our simulation 
runs, where the central goal was the comparison of distinctly 
different treatment strategies, we assumed steady-state cli-
matic and site conditions (Hanewinkel and Pretzsch 2000).

Despite these limitations, one of the backbones of this 
study is the reliability of the model SILVA in terms of pro-
viding the realistic quantitative results in terms of tree and 
stand growth. The model is used for applications in practice 
since the late 1990s, and the current version has been quan-
titatively calibrated with about 350,000 single-tree growth 
observations from long-term research plots (Pretzsch 2009, 
p. 519). Mixed mountain forests and pure spruce stands in 
Bavaria are particularly well represented in this data set. 
Thus, this study applied the model in a core area of its valid-
ity, which became also evident in the presented validation 
runs. The evaluation criterion forest growth was therefore 
directly covered by this validity. The other criteria (eco-
nomics, carbon sequestration, biodiversity, stability), in 
contrast, were not primary simulation output variables, and 
they rather result from secondary calculations made on the 
former. However, the development of the standing stock and 
growth and the achievement of a long-term steady state play 
a crucial role, and most other criteria depend on this steady-
state structure, volume and growth (Forest Europe 2011; 
MCPFE 1993; Dieler et al. 2017). All the methods applied 
and associated assumptions are documented and verified in 
published research works (see corresponding parts of the 

Fig. 6  Trends in the number of species of flora (a), fauna (b) and 
fungi (c) for time since simulation start of all the simulated scenarios. 
Lines were generated by fitting a loess curve. Grey areas represent 
the 95% confidence interval. DN, do-nothing scenario; G, gap-coupes 
with planting of beech and fir; SH1, shelterwood-coupes with natu-
ral regeneration; SH2, shelterwood-coupes with planting of fir and 
beech; SL1, slit-coupes with natural regeneration; SL2, slit-coupes 
with planting of fir and beech; SC, strip clear-cutting with natural 
regeneration. See Table  2 for a detailed description of the different 
scenarios. For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article
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methods section). So, we feel, our simulation and evaluation 
methodology—with a valid growth and yield model at its 
fundament—can be meaningfully applied given the goals 
of this study.

Forest transformation

The newly introduced species (beech and fir) can be estab-
lished by planting or natural regeneration after artificial dis-
turbances such as shelterwood, slit or gap-coupes. In their 
study on the transformation of even-aged to uneven-aged 
stands of spruce, Hanewinkel and Pretzsch (2000) showed 
that a transformation is strongly dependent on the gap size. 

They showed that regeneration can only be established from 
gap sizes larger than 40 m in diameter. However, this study 
only includes the regeneration of spruce. Our study dem-
onstrates that smaller gap sizes are sufficient if shade toler-
ant species are involved in the transformation process by 
planting or from natural regeneration if potential mast trees 
are located nearby. The smaller interventions also have less 
impact on the periodic annual volume increment at the stand 
level. This is in line with Brunner et al. (2006) who demon-
strated, based on silvicultural scenario modelling, a trans-
formation of spruce stands by under-planting with beech in 
a gradually opened stand of spruce.

Fig. 7  Radar chart of the evaluation of multiple criteria. FG, forest 
growth; NPV, net present value; C, carbon sequestration; S, stabil-
ity; NS, number of species. The scaled results of the respective fac-
tors of each criterion are shown (see Table  3 for explanation). The 
results were scaled between 0 and 1. The results evaluated with 1 rep-
resent the best scenario in comparison with the other scenarios. Cat-
egories rated 0 show the worst scenario. DN, do-nothing scenario; G, 

gap-coupes with planting of beech and fir; SH1, shelterwood-coupes 
with natural regeneration; SH2, shelterwood-coupes with planting of 
fir and beech; SL1, slit-coupes with natural regeneration; SL2, slit-
coupes with planting of fir and beech; SC, strip clear-cutting with 
natural regeneration. See Table 2 for a detailed description of the dif-
ferent scenarios
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In the strip clear-cut scenario, after the removal of all the 
trees from the strip, natural regeneration of beech and fir 
started (if potential mast trees are located nearby). However, 
beech and fir were outcompeted by spruce later on. This 
may be avoided by earlier planting or groupwise separation 
of the three species, for example, through pre-commercial 
thinning (Brunner et al. 2006). Regulation of the mixture 
could be accomplished in SILVA only by thinning crop trees 
at a very early age. However, in the long run, the small-scale 
interventions of the slit-coupe scenarios might better sup-
port asynchronous forest dynamics than the other scenarios 
and thus support the forest’s inherent adaptive mechanisms 
(Morin et al. 2014). In the do-nothing scenario, spruce 
remained dominant until the end of the simulation and the 
regeneration of fir and beech appeared only slowly. Sugges-
tions by e.g. Drever et al. (2006) that unmanaged develop-
ment might enable natural processes to restore the original 
species composition of the forests cannot be supported by 
our study, at least not in the time span of the simulation 
period. The slow rate of tree species change agrees with 
Schelhaas et al. (2015), who suggested that European for-
ests are very inert and that altering their species composi-
tion requires a long time. The simulation results of Hlásny 
et al. (2017) in the Goat Backs mountain area of Slovakia 
also confirm these results. However, larger natural distur-
bances are to be expected in mountainous forests (Bircher 
et al. 2016), and the partial accumulation of the natural 
regeneration of non-spruce species is realistic (Buma and 
Wessman 2013). In all presented scenarios, climate change 

and disturbance-mediated support to tree species diversity 
should be considered as an opportunity for forest adaptation 
efforts in spruce-dominated stands. Indeed, adverse effects, 
such as productivity losses or bark beetle outbreaks, must 
not be marginalised (Jönsson et al. 2007; Fleischer et al. 
2016; Hlásny et al. 2017).

The lower stand periodic annual volume increment of 
long-term experimental plots has to be put into perspective 
to the extent that the proportion of spruce in the simulation 
plots was higher, and disturbing events, such as wind and 
bark beetle infestation, cannot be adequately represented 
by SILVA. As damage was not modelled in our scenarios, 
the standing volume of the remaining stand in the do-noth-
ing scenario reached values of almost 2000 m3 ha−1 only 
occasionally found on experimental plots. The comparative 
results from untreated long-term experimental plots with 
pure spruce show maximum volumes of the remaining 
stand of approx. 1600 m3 ha−1 (Röhle 1995). We accepted 
this bias in the results as all the scenarios were flawed in 
the same way. We were interested in the relative differences 
and ranking of the scenarios, rather than in their absolute 
performance.

In order to transform the destabilised pure spruce forests 
into stable mixed mountain forests on a large scale, methods 
should be found to reduce the high harvest costs (Valente 
et al. 2014; Jandl et al. 2018). For example, Valente et al. 
(2011) demonstrate that a whole-tree system employed in 
alpine conditions showed lower costs and emissions and 
therefore offered greater economic and environmental ben-
efits than the traditional shortwood system. Furthermore, the 
same authors showed that cable yarding seems to be very 
efficient in terms of having a minimal impact on residual 
stand and soil which seems particularly important against 
the background of already destabilised forests.

Long‑term safeguarding of forest transformation

Although the slit and shelterwood scenarios reached steady-
state conditions at the last 50 years of the simulation runs, 
these structures can only be artificially maintained in their 
characteristic structures by continuous removal in the 
upper and middle layers. Without silvicultural interven-
tions over a longer period of time, the upper and middle 
layers may become so dense that the regeneration layer no 
longer receives enough light, precipitates and the balanced 
age structure is lost (Pretzsch 2019). Anyway, as long as 
there are continuous silvicultural interventions, tree species 
compositions will remain stable due to the slit and shelter-
wood scenarios and will ensure the desired forest redevel-
opment in the long term. The gap scenario also suggests 
that the transformation will be successful in the long term. 
Although this scenario is, due to the higher amounts of har-
vested wood, less stable in terms of stand periodic annual 
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Fig. 8  Standard deviation of the scores from the five criteria (forest 
growth, economics, carbon sequestration, (stand) stability and bio-
diversity) over the sum of the scores. DN, do-nothing scenario; G, 
gap-coupes with planting of beech and fir; SH1, shelterwood-coupes 
with natural regeneration; SH2, shelterwood-coupes with planting of 
fir and beech; SL1, slit-coupes with natural regeneration; SL2, slit-
coupes with planting of fir and beech; SC, strip clear-cutting with 
natural regeneration. See Table 2 for a detailed description of the dif-
ferent scenarios and Table 3 for an overview of the five criteria
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volume increment over the entire simulation period, this sce-
nario achieves a higher tree species mixture and an uneven-
aged structure at the end of the simulation runs. In terms 
of productivity, these mixed uneven-aged stands have the 
advantage of being more productive compared to neighbour-
ing pure stands (Pretzsch et al. 2015) on the one hand, and, 
on the other hand, that a potential reduction in the volume 
increment of one species can be compensated for by higher 
volume increments of another species (Hilmers et al. 2019).

Evaluation of multiple criteria

The evaluation of multiple criteria allowed to highlight three 
basic patterns: The shelterwood and strip clear-cut scenarios 
showed highly divergent scores, while the slit and gap sce-
narios achieved high scores in all categories. The do-nothing 
scenario only achieved the highest score in the category of 
biodiversity. However, as unmanaged forests are increas-
ingly valued for their benefits in the context of biodiver-
sity conservation (Paillet et al. 2010), an increasing share 
in the landscape will not necessarily lead to a reduction in 
important regulating ecosystem services. For example, Seidl 
et al. (2019) showed that, in a mountain forest landscape, the 
regulation of both climate and erosion was higher in unman-
aged systems, compared to systems implementing current 
management recommendations (see also Irauschek et al. 
2017; Mina et al. 2017; Langner et al. 2017). It is important 
to note, however, that many rural mountain communities not 
only depend on regulating ecosystem services, but also gen-
erate a substantial part of their income and livelihood from 
managing natural resources (Häyhä et al. 2015). Not manag-
ing forests might thus negatively affect rural communities 
and result in the loss of other important ecosystem services, 
such as the supply of timber and biomass for bioenergy.

Although the evaluation of multiple criteria presented 
here is innovative for a holistic view of silvicultural con-
cepts, the entire forest complex should not be reduced to the 
criteria described here. Furthermore, the considered indica-
tors are only proxies for the respective services and differ 
with regard to how closely they resemble the relevant under-
lying processes. However, based on the available results, 
the determinant effects of the different silvicultural concepts 
could be made visible, even for those who have not yet been 
able to draw on empirical studies or practical experience 
because of the new concepts. It was the aim of this study to 
develop and evaluate a set of technically feasible manage-
ment options for the transformation to semi-natural moun-
tain forests; the choice of the optimum or best scenario also 
depends on economic, social, legal and eco-political factors 
not covered by this study.

Significance for forest transformation worldwide

Forestry has been changing throughout its history in 
response to the changing needs of human populations and 
changing supplies of forest resources and values to satisfy 
these needs (Kimmins and Blanco 2011). Worldwide, there 
is a multitude of forests which have been destabilised dur-
ing history. For example, the forests in Bangladesh or the 
temperate rainforests in Canada and the USA face similar 
challenges to the destabilised forests in the Alps of Europe 
resulting from the former salt works supply. They are to be 
transformed to sustainable, stable but managed systems. Our 
results show that there are several equivalent trajectories to 
achieve these goals. Thus, the risk of failure if one does not 
strictly follow a sophisticated guideline is low. There is little 
reason, therefore, why transformation of destabilised forest 
should not be attempted in order to suffer fewer human casu-
alties and economic damage in the future, in many regions 
of the world.

Conclusion

Silvicultural scenario comparisons quantify the long-lasting 
impact of management decisions on the stand and landscape 
(Niedertscheider et al. 2017; Thom et al. 2018); they can 
reveal how current decisions influence the future man-
agement options and flexibility to react to environmental 
changes. The results of the presented study showed that con-
tinuous forest interventions can transform secondary spruce 
stands into mixed mountain forests which are in a steady 
state in terms of stem diameter and tree species distribution. 
Of the investigated scenarios, we consider the ones with 
gaps or slit cuts to have the most beneficial overall utility 
values for the portfolio of five evaluation criteria. If timber 
production is not a management goal, and the focus is on 
nature conservation, the do-nothing regimes turned out to be 
a possible solution. However, it was not the aim of this study 
to present the ‘best’ management regime in mountain forests, 
but to exemplify and demonstrate the evaluation of man-
agement options with regard to related trade-offs between 
evaluation criteria.

Given that mountain forest management is highly cost 
and labour intensive (Valente et al. 2014; Jandl et al. 2018), 
spatially explicit simulation models can help to evaluate 
silvicultural practices which have not yet been sufficiently 
tested in practice, even if they may not be able to reproduce 
future developments in detail. However, with our results, 
we have showed that it is possible, by means of several tra-
jectories, to return destabilised forests to sustainable, stable 
but managed systems. They showed that a transformation 
is realistic, even if sophisticated silvicultural concepts are 
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not strictly pursued. In order to suffer fewer human casual-
ties and less economic damage in the future, transformation 
efforts of destabilised forests should therefore be pursued 
worldwide.
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